"HCR's Theory of Polygon"
 "Solid angle subtended by any polygonal plane at any point in 3D space"
 Mr Harish Chandra Rajpoot
 Madan Mohan Malaviya University of Technology, Gorakhpur-273010 (UP) India

9 Oct, 2014

Proposed \& illustrated by H. C. Rajpoot

I. Introduction

The graphical method overcomes the limitations of all other analytical methods provided the location of foot of perpendicular drawn from the given point to the plane of polygon is known. It involves theoretically zero error if the calculations are done correctly. A polygon is the plane bounded by the straight lines. But, if the given polygon is divided into certain number of elementary triangles then the solid angle subtended by polygon at given point can be determined by summing up the solid angles subtended by all the elementary triangles at the same point. This concept derived a Theory. According to it "for a given configuration of plane \& location of point in the space, if a perpendicular, from any given point in the space, is drawn to the plane of given polygon then the polygonal plane (polygon) can be internally or externally or both divided into a certain number of elementary triangles by joining all the vertices of polygon to the foot of perpendicular (F.O.P.) Further each of these triangles can be internally or externally sub-divided in two right triangles having common vertex at the foot of perpendicular. Thus the solid angle subtended by the given polygonal plane at the given point is the algebraic sum of solid angles subtended by all the elementary triangles at the same point such that algebraic sum of the areas of all these triangles is equal to the area of given polygonal plane"

Let's study in an order to easily understand the Theory of Polygon in a simple way

II. HCR's Master/Standard Formula-1 (Solid angle subtended by a right triangular plane at any point lying at a normal height h from any of the acute angled vertices)

Using Fundamental Theorem of Solid Angle:

Let there be a right triangular plane ONM having perpendicular $\mathrm{ON}=\mathrm{p}$ \& the base $\mathrm{MN}=\mathrm{b}$ and a given point say $P(0,0, h)$ at a height ' h ' lying on the axis (i.e. Z-axis) passing through the acute angled vertex say ' O '
(As shown in the figure1 below)
In right $\triangle P O R$

$$
\begin{aligned}
& \Rightarrow \sec \varphi=\frac{P R}{P O} \Rightarrow P R=P O \sec \varphi=h \sec \varphi \& \\
& \tan \varphi=\frac{O R}{P O} \Rightarrow O R=P O \tan \varphi=h \tan \varphi=x
\end{aligned}
$$

Now, the equation of the straight line OM passing through the origin ' O^{\prime}

$$
\begin{aligned}
& \Rightarrow y=m x=\frac{b}{p} x \quad\left(\text { since }, \quad \text { slope of line } O M=\frac{b}{p}\right) \\
& \Rightarrow y=\frac{b}{p} x=\frac{b}{p} h \tan \varphi
\end{aligned}
$$

Now, consider a point $Q(x, y)$ on the straight line $O M$

$$
\Rightarrow Q R=y=\frac{b}{p} h \tan \varphi
$$

In right $\triangle P R Q$

$$
\begin{aligned}
\Rightarrow \sin \theta= & \frac{Q R}{P Q}=\frac{Q R}{\sqrt{Q R^{2}+P R^{2}}}=\frac{\left(\frac{b}{p} h \tan \varphi\right)}{\sqrt{\left(\frac{b}{p} h \tan \varphi\right)^{2}+h^{2} \sec ^{2} \varphi}} \\
\sin \theta & =\frac{b \sin \varphi}{\sqrt{b^{2} \sin ^{2} \varphi+p^{2}}}
\end{aligned}
$$

In right $\triangle P O N$

$$
\Rightarrow \cos \varphi_{0}=\frac{O P}{P N}=\frac{O P}{\sqrt{P O^{2}+O N^{2}}}=\frac{h}{\sqrt{h^{2}+p^{2}}}
$$

Fig 1: Right Triangular Plane $O N M, O N=p \& M N=b$

Let's consider an imaginary spherical surface having radius ' R ' \& centre at the given point ' P ' such that the area of projection of the given plane ONM on the spherical surface w.r.t. the given point ' P ' is ' A '

Now, consider an elementary area of projection ' dA ' of the plane ONM on the spherical surface in the first quadrant YOX
(As shown in the figure 2)
Now, elementary area of projection in the first quadrant
$\Rightarrow d A=($ length $)($ width $)=(R \sin \theta d \varphi)(R d \theta)=R^{2} \sin \theta d \theta d \varphi$
Hence, area of projection of the plane ONM on the spherical surface in the first quadrant is obtained by integrating the above expression in the first quadrant \&

Applying the proper limits of ' θ 'from $\theta_{1}=(\pi / 2-\theta)$ to $\theta_{2}=\pi / 2 \quad$ \& ${ }^{\prime} \varphi^{\prime}$ from $\varphi_{1}=0$ to $\varphi_{2}=\varphi_{0}$, we get

Fig 2: Elementary area dA on spherical surface

$$
\begin{aligned}
& \Rightarrow A=\int_{0}^{\varphi_{0}}\left[\int_{\frac{\pi}{2}-\theta}^{\frac{\pi}{2}} R^{2} \sin \theta d \theta\right] d \varphi=R^{2} \int_{0}^{\varphi_{0}}\left[\int_{\frac{\pi}{2}-\theta}^{\frac{\pi}{2}} \sin \theta d \theta\right] d \varphi \\
&=R^{2} \int_{0}^{\varphi_{0}} d \varphi[-\cos \theta]_{\frac{\pi}{2}-\theta}^{\frac{\pi}{2}}=R^{2} \int_{0}^{\varphi_{0}} \sin \theta d \varphi=R^{2} \int_{0}^{\varphi_{0}} \frac{b \sin \varphi}{\sqrt{b^{2} \sin ^{2} \varphi+p^{2}}} d \varphi \\
&=R^{2} \int_{0}^{\varphi_{0}} \frac{b \sin \varphi}{\sqrt{b^{2}-b^{2} \sin ^{2} \varphi+p^{2}}} d \varphi \\
& \quad\left(\operatorname{since}, \sin ^{2} \alpha=1-\cos ^{2} \alpha\right)
\end{aligned}
$$

$$
\begin{aligned}
&= R^{2} \int_{0}^{\varphi_{0}} \frac{b \sin \varphi}{b \sqrt{\frac{b^{2}+p^{2}}{b^{2}}-\cos ^{2} \varphi}} d \varphi=R^{2} \int_{0}^{\varphi_{0}} \frac{\sin \varphi}{\sqrt{K^{2}-\cos ^{2} \varphi}} d \varphi \\
& \quad \text { where }, K=\sqrt{\frac{b^{2}+p^{2}}{b^{2}}}=\frac{\sqrt{b^{2}+p^{2}}}{b} \\
& \Rightarrow A=R^{2}\left[-\sin ^{-1}\left\{\frac{\cos \varphi}{K}\right\}\right]_{0}^{\varphi_{0}}=R^{2}\left[-\sin ^{-1}\left\{\frac{\cos \varphi_{0}}{K}\right\}+\sin ^{-1}\left\{\frac{\cos 0}{K}\right\}\right] \\
&=R^{2}\left[\sin ^{-1}\left\{\frac{1}{K}\right\}-\sin ^{-1}\left\{\frac{\cos \varphi_{0}}{K}\right\}\right]
\end{aligned}
$$

Now, on setting the values of ' K ' \& ' $\cos \varphi_{0}{ }^{\prime}$, we get

$$
\begin{aligned}
& \Rightarrow A=R^{2}\left[\sin ^{-1}\left\{\frac{1}{\frac{\sqrt{b^{2}+p^{2}}}{b}}\right\}-\sin ^{-1}\left\{\frac{\frac{\sqrt{h^{2}+p^{2}}}{\sqrt{b^{2}+p^{2}}}}{b}\right\}\right] \\
& =R^{2}\left[\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}\right]
\end{aligned}
$$

Now, the solid angle subtended by the right triangular plane ONM at the given point ' P '
= solid angle subtended by area of projection of triangle ONM on the spherical surface at the same point ' P '

Using Fundamental Theorem

$$
\Rightarrow \omega=\int_{s} \frac{d A}{r^{2}}=\int_{s} \frac{d A}{R^{2}}=\frac{1}{R^{2}} \int_{s} d A=\frac{A}{R^{2}}
$$

(since, R is constant for each point on the area of projection on the spherical surface)

$$
\begin{align*}
\Rightarrow \omega & =\frac{1}{R^{2}} \times R^{2}\left[\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}\right] \\
& =\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\} \\
\Rightarrow \boldsymbol{\omega} & =\left[\sin ^{-1}\left\{\frac{\boldsymbol{b}}{\sqrt{\boldsymbol{b}^{2}+\boldsymbol{p}^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\boldsymbol{b}}{\sqrt{\boldsymbol{b}^{2}+\boldsymbol{p}^{2}}}\right)\left(\frac{\boldsymbol{h}}{\sqrt{\boldsymbol{h}^{2}+\boldsymbol{p}^{2}}}\right)\right\}\right] \tag{1}
\end{align*}
$$

If the given point $P(0,0, h)$ is lying on the axis normal to the plane \& passing through the acute angled vertex ' M ' then the solid angle subtended by the right triangular plane ONM is obtained by replacing ' b ' by ' p ' \& ' p ' by ' b ' in the equation(1), we have

$$
\Rightarrow \omega=\left[\sin ^{-1}\left\{\frac{p}{\sqrt{p^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{p}{\sqrt{p^{2}+b^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+b^{2}}}\right)\right\}\right]
$$

Note: $\mathrm{Eq}(1)$ is named as HCR's Master/Standard Formula-1 which is extremely useful to find out the solid angle subtended by any polygon at any point in the space thus all the formulae can be derived by using eq(1).

III. Specifying the location of given point \& foot of perpendicular in the Plane of Polygon

Let there be any point say point P \& any polygonal plane say plane ABCDEF in the space. Draw a perpendicular PO from the point ' P ' to the plane of polygon which passes through the point ' O ' i.e. foot of perpendicular (F.O.P.) (See front \& top views in the figure 3 below showing actual location of point 'P' \& F.O.P. 'O')

Fig 3: Actual location of point 'P' \& F.O.P. 'O'

Fig 4: Location of ' P ' \& ' O ' in the plane of paper

Now, for simplification of specifying the location of given point ' P ' \& foot of perpendicular ' Q ' we assume
a. Foot of perpendicular ' O ' as the origin \&
b. Point \mathbf{P} is lying on the \mathbf{Z}-axis

If the length of perpendicular PO is h then the location of given point ' P ' \& foot of perpendicular ' O ' in the plane of polygon (i.e. plane of paper) is denoted by $P(0,0, h)$ similar to the 3-D co-ordinate system
(See the figure 4 above)

IV. Element Method (Method of dividing the polygon into elementary triangles)

It is the method of Joining all the vertices $A, B, C, D, E \& F$ of a given polygon to the foot of perpendicular ' O ' drawn from the given point P in the space (as shown by the dotted lines in figure 4 above) Thus, $\triangle A O B, \triangle B O C, \triangle C O D, \triangle D O E, \triangle E O F \& \triangle A O F$ are the elementary triangles which have common vertex at the foot of perpendicular ' O '.

Note: $\triangle A B C, \triangle B C D, \triangle C D E, \triangle D E F \& \triangle E F A$ are not taken as the elementary triangles since they don't have common vertex at the foot of perpendicular ' O '

The area ($A_{\text {polygon }}$) of polygon ABCDEF is given as follows (from the figure 4)

$$
\begin{aligned}
& A_{\text {polygon }}=\text { algebraic sum of areas of elementary triangles } \\
& \qquad A_{\triangle A O B}+A_{\triangle B O C}+A_{\triangle C O D}+A_{\triangle D O E}+A_{\triangle E O F}+A_{\triangle A O F}
\end{aligned}
$$

Since the location of given point \& the configuration of polygonal plane is not changed hence the solid angle ($\omega_{\text {polygon }}$) subtended by polygonal plane at the given point in the space is the algebraic sum of solid angles subtended by the elementary triangles obtained by joining all the vertices of polygon to the F.O.P.

Now, replacing the areas of elementary triangles by their respective values of solid angles in the above expression as follows

$$
\begin{aligned}
\omega_{\text {polygon }} & =\text { alebraic sum of solid angles subtended by the elementary triangles } \\
& =\omega_{\triangle A O B}+\omega_{\triangle B O C}+\omega_{\triangle C O D}+\omega_{\triangle D O E}+\omega_{\triangle E O F}+\omega_{\triangle A O F}
\end{aligned}
$$

While, the values of solid angles subtended by elementary triangles are determined by using axiom of triangle i.e. dividing each elementary triangle into two right triangles \& using standard formula-1 of right triangle.

V. Axiom of Triangle

"If the perpendicular, drawn from a given point in the space to the plane of a given triangle, passes through one of the vertices then that triangle can be divided internally or externally (w.r.t. F.O.P.) into two right triangles having common vertex at the foot of perpendicular, simply by drawing a normal from the common vertex (i.e. F.O.P.) to the opposite side of given triangle."

- An acute angled triangle is internally divided w.r.t. F.O.P. (i.e. common vertex)
- A right angled triangle is internally divided w.r.t. F.O.P. (i.e. common vertex)
- An obtuse angled triangle is divided

Internally if and only if the angle of common vertex (F.O.P.) is obtuse

Externally if and only if the angle of common vertex (F.O.P.) is acute
Now, consider a given point $P(0,0, h)$ (located perpendicular to the plane of paper) lying at a height h on the normal axes passing through the vertices $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ where the points $P_{1}(0,0, h), P_{2}(0,0, h) \& P_{3}(0,0, h)$ are the different locations of given point P on the perpendiculars passing through the vertices $A, B \& C$ respectively at the same height h.
(See the different cases in the figures (5), (6) \& (7) below)

- Acute Angled Triangle:

Consider the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ at a normal height h from the vertex ' A ' (i.e. foot of perpendicular drawn from the point P_{1} to the plane of $\triangle A B C$)

Now, draw the perpendicular AM from F.O.P. ' A ' to the opposite side $B C$ to divide the $\triangle A B C$ into two sub-elementary right triangles $\triangle A M B$ \& $\triangle A M C$

In this case, the area $\left(A_{\triangle A B C}\right)$ of $\triangle A B C$ is given by

$$
A_{\triangle A B C}=\text { algebraic sum of areas of elemetary triangles }
$$

Fig 5: Acute Angled Triangle

$$
=A_{\triangle A M B}+A_{\triangle A M C} \quad(\triangle A B C \text { is internally divided })
$$

Hence replacing the areas by the corresponding values of solid angles, we get

$$
\begin{aligned}
\omega_{\triangle A B C} & =\text { algebraic sum of solid angles subtended by elemetary triangles at point } P_{1}(0,0, h) \\
& =\omega_{\triangle A M B}+\omega_{\triangle A M C} \quad(\triangle \boldsymbol{A B C} \text { is internally divided })
\end{aligned}
$$

The values of $\omega_{\triangle A M B} \& \omega_{\triangle A M C}$ subtended by the right triangles $\triangle A M B \& \triangle A M C$ respectively are calculated by using standard formula-1 of right triangle (from eq(1) or eq(2)) as follows

$$
\omega=\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}
$$

Measure the dimensions $A M, B M \& P_{1} A$ from the drawing \& set $b=B M, p=A M \&$
$h=$ normal height of point $P_{1}(0,0, h)$ from the vertex ' A^{\prime} (i.e.F.O.P. $)=P_{1} A$ in above expression We get, the solid angle subtended by the right $\triangle A M B$ at the given point $P_{1}(0,0, h)$

$$
\omega_{\triangle A M B}=\sin ^{-1}\left\{\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Similarly, solid angle subtended by the right $\triangle A M C$ at the the same point $P_{1}(0,0, h)$

$$
\omega_{\Delta A M C}=\sin ^{-1}\left\{\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Hence, the solid angle subtended by the given $\triangle A B C$ at the the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ is calculated as

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A M B}+\omega_{\triangle A M C}
$$

Similarly, for the location of given point $\boldsymbol{P}_{\mathbf{2}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex 'B' (i.e. foot of perpendicular drawn from the point $P_{2}(0,0, h)$ to the plane of $\left.\triangle A B C\right)$ (See figure 5 above)

By following the above procedure, we get the solid angle subtended by the given $\triangle A B C$ at the given point $P_{2}(0,0, h)$ as follows

$$
\begin{gathered}
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A N B}+\omega_{\triangle C N B} \\
\omega_{\triangle A N B}=\sin ^{-1}\left\{\frac{A N}{\sqrt{(A N)^{2}+(B N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A N}{\sqrt{(A N)^{2}+(B N)^{2}}}\right)\left(\frac{P_{2} B}{\sqrt{\left(P_{2} B\right)^{2}+(B N)^{2}}}\right)\right\} \& \\
\omega_{\triangle C N B}=\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(B N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(B N)^{2}}}\right)\left(\frac{P_{2} B}{\sqrt{\left(P_{2} B\right)^{2}+(B N)^{2}}}\right)\right\}
\end{gathered}
$$

Similarly, for the location of given point $\boldsymbol{P}_{\mathbf{3}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex ' C ' (i.e. foot of perpendicular drawn from the point $P_{3}(0,0, h)$ to the plane of $\left.\triangle A B C\right)$ (See figure 5 above)

By following the above procedure, we get the solid angle subtended by the given $\triangle A B C$ at the the given point $P_{3}(0,0, h)$ as follows

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A Q C}+\omega_{\triangle B Q C}
$$

We can calculate the corresponding values of $\omega_{\triangle A Q C} \& \omega_{\triangle B Q C}$ using standard formula-1 as follows

$$
\begin{aligned}
& \omega_{\triangle A Q C}=\sin ^{-1}\left\{\frac{A Q}{\sqrt{(A Q)^{2}+(C Q)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A Q}{\sqrt{(A Q)^{2}+(C Q)^{2}}}\right)\left(\frac{P_{3} C}{\sqrt{\left(P_{3} C\right)^{2}+(C Q)^{2}}}\right)\right\} \& \\
& \omega_{\triangle B Q C}=\sin ^{-1}\left\{\frac{B Q}{\sqrt{(B Q)^{2}+(C Q)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B Q}{\sqrt{(B Q)^{2}+(C Q)^{2}}}\right)\left(\frac{P_{3} C}{\sqrt{\left(P_{3} C\right)^{2}+(C Q)^{2}}}\right)\right\}
\end{aligned}
$$

- Right Angled Triangle:

Consider the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ at a normal height h from the vertex ' A ' (i.e. foot of perpendicular drawn from the point $P_{1}(0,0, h)$ to the plane of right $\triangle B A C$) (See the figure 6)

Now, draw the perpendicular AM from F.O.P. ' A ' to the opposite side $B C$ to divide the right $\triangle B A C$ into two sub-elementary right triangles $\triangle A M B \& \triangle A M C$

In this case, the area ($A_{\triangle B A C}$) of right $\triangle B A C$ is given by $A_{\triangle B A C}=$ algebraic sum of areas of elemetary triangles
$A_{\triangle B A C}=$
$A_{\triangle A M B}+A_{\triangle A M C} \quad($ right \triangle BAC is internally divided $)$
Hence replacing the areas by the corresponding values of solid angles, we get

Fig 6: Right Angled Triangle
$\omega_{\triangle B A C}=$ algebraic sum of solid angles subtended by elemetary triangles at point $P_{1}(0,0, h)$

$$
=\omega_{\triangle A M B}+\omega_{\triangle A M C} \quad(\text { right } \triangle \boldsymbol{B} \boldsymbol{A} \boldsymbol{C} \text { is internally divided })
$$

The values of $\omega_{\triangle A M B} \& \omega_{\triangle A M C}$ subtended by the right triangles $\triangle A M B \& \triangle A M C$ respectively are calculated by using standard formula-1 of right triangle (from eq(1) or eq(2)) as follows

$$
\omega=\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}
$$

Measure the dimensions $A M, B M \& P_{1} A$ from the drawing \& set $b=B M, p=A M \&$
$h=$ normal height of point $P_{1}(0,0, h)$ from the vertex ' A ' (i.e.F.O.P. $)=P_{1} A$ in above expression We get, the solid angle subtended by the right $\triangle A M B$ at the given point $P_{1}(0,0, h)$

$$
\omega_{\triangle A M B}=\sin ^{-1}\left\{\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Similarly, solid angle subtended by the right $\triangle A M C$ at the the same point $P_{1}(0,0, h)$

$$
\omega_{\triangle A M C}=\sin ^{-1}\left\{\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Hence, the solid angle subtended by right $\triangle B A C$ at the the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ is calculated as

$$
\Rightarrow \boldsymbol{\omega}_{\triangle B A C}=\omega_{\triangle A M B}+\omega_{\triangle A M C}
$$

Now, for the location of given point $\boldsymbol{P}_{\mathbf{2}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex ' B ' (i.e. foot of perpendicular drawn from the point $P_{2}(0,0, h)$ to the plane of right $\triangle B A C$) (See figure 6 above)

Using standard formula-1 \& setting $b=A C, p=A B$ \&
$h=$ normal height of point $P_{2}(0,0, h)$ from the vertex ' B^{\prime} (i.e.F.O.P. $)=P_{2} B$
We get the solid angle subtended by the right $\triangle B A C$ at the the given point $P_{2}(0,0, h)$ as follows

$$
\omega_{\triangle B A C}=\sin ^{-1}\left\{\frac{A C}{\sqrt{(A C)^{2}+(A B)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A C}{\sqrt{(A C)^{2}+(A B)^{2}}}\right)\left(\frac{P_{2} B}{\sqrt{\left(P_{2} B\right)^{2}+(A B)^{2}}}\right)\right\}
$$

Similarly, for the location of given point $\boldsymbol{P}_{\mathbf{3}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex ' C^{\prime} (i.e. foot of perpendicular drawn from the point $P_{3}(0,0, h)$ to the plane of right $\triangle B A C$) (See figure 6 above)

Using standard formula-1 \& setting $b=A B, p=A C$ \&
$h=$ normal height of point $P_{3}(0,0, h)$ from the vertex ${ }^{\prime} C^{\prime}($ i.e.F.O.P. $)=P_{3} C$
We get the solid angle subtended by the right $\triangle B A C$ at the the given point $P_{3}(0,0, h)$ as follows

$$
\omega_{\triangle B A C}=\sin ^{-1}\left\{\frac{A B}{\sqrt{(A B)^{2}+(A C)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A B}{\sqrt{(A B)^{2}+(A C)^{2}}}\right)\left(\frac{P_{3} C}{\sqrt{\left(P_{3} C\right)^{2}+(A C)^{2}}}\right)\right\}
$$

- Obtuse Angled Triangle:

Consider the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ at a normal height h from the vertex ' A ' (i.e. foot of perpendicular drawn from the point $P_{1}(0,0, h)$ to the plane of $\triangle A B C$) (See the figure 7)

Now, draw the perpendicular AM from F.O.P. ' A ' to the opposite side BC to divide the obtuse $\triangle A B C$ into two subelementary right triangles $\triangle A M B \& \triangle A M C$

In this case, the area ($A_{\triangle A B C}$) of obtuse $\triangle A B C$ is given by

```
\(A_{\triangle A B C}=\)
algebraic sum of areas of elemetary triangles
```


Fig 7: Obtuse Angled Triangle

$$
\left.=A_{\triangle A M B}+A_{\triangle A M C} \quad \text { (obtuse } \triangle A B C \text { is internally divided }\right)
$$

Hence replacing the areas by the corresponding values of solid angles, we get
$\omega_{\triangle A B C}=$ algebraic sum of solid angles subtended by elemetary triangles at point $P_{1}(0,0, h)$

$$
=\omega_{\triangle A M B}+\omega_{\triangle A M C} \quad(\text { obtuse } \triangle A B C \text { is internally divided })
$$

The values of $\omega_{\triangle A M B} \& \omega_{\triangle A M C}$ subtended by the right triangles $\triangle A M B \& \triangle A M C$ respectively are calculated by using standard formula-1 of right triangle (from eq(1) or eq(2)) as follows

$$
\omega=\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}
$$

Measure the dimensions $A M, B M \& P_{1} A$ from the drawing \& set $b=B M, p=A M \&$
$h=$ normal height of point $P_{1}(0,0, h)$ from the vertex ' $A^{\prime}($ i.e.F.O.P. $)=P_{1} A$ in above expression
We get, the solid angle subtended by the right $\triangle A M B$ at the given point $P_{1}(0,0, h)$

$$
\omega_{\triangle A M B}=\sin ^{-1}\left\{\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Similarly, solid angle subtended by the right $\triangle A M C$ at the the same point $P_{1}(0,0, h)$

$$
\omega_{\Delta A M C}=\sin ^{-1}\left\{\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right)\left(\frac{P_{1} A}{\sqrt{\left(P_{1} A\right)^{2}+(A M)^{2}}}\right)\right\}
$$

Hence, the solid angle subtended by obtuse $\triangle A B C$ at the the given point $\boldsymbol{P}_{\mathbf{1}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ is calculated as

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A M B}+\omega_{\triangle A M C}
$$

Now, for the location of given point $\boldsymbol{P}_{\mathbf{2}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex ' B ' (i.e. foot of perpendicular drawn from the point $P_{2}(0,0, h)$ to the plane of $\triangle A B C$) (See figure 7 above)

Draw the perpendicular $B Q$ from F.O.P. ' B ' to the opposite side $A C$ to divide the obtuse $\triangle A B C$ into two sub-elementary right triangles $\triangle B Q C \& \triangle B Q A$

In this case, the area $\left(A_{\triangle A B C}\right)$ of obtuse $\triangle A B C$ is given by

$$
\begin{aligned}
A_{\triangle A B C} & =\text { algebraic sum of areas of elemetary triangles } \\
& =A_{\triangle B Q C}-A_{\triangle B Q A} \quad(\text { obtuse } \triangle A B C \text { is externally divided })
\end{aligned}
$$

Hence replacing the areas by the corresponding values of solid angles, we get
$\omega_{\triangle A B C}=$ algebraic sum of solid angles subtended by elemetary triangles at point $P_{2}(0,0, h)$

$$
=\omega_{\triangle B Q C}-\omega_{\triangle B Q A} \quad(\text { obtuse } \triangle \boldsymbol{A B C} \text { is externally divided })
$$

The values of $\omega_{\triangle B Q C} \& \omega_{\triangle B Q A}$ subtended by the right triangles $\triangle B Q C \& \triangle B Q A$ respectively are calculated by using standard formula-1 of right triangle (from eq(1) or eq(2)) as follows

$$
\omega=\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}
$$

Measure the dimensions $Q C, B Q \& P_{2} B$ from the drawing \& set $b=Q C, p=B Q \&$
$h=$ normal height of point $P_{2}(0,0, h)$ from the vertex ' B^{\prime} (i.e.F.O.P. $)=P_{2} B$ in above expression We get, the solid angle subtended by the right $\triangle B Q C$ at the given point $P_{2}(0,0, h)$

$$
\omega_{\triangle B Q C}=\sin ^{-1}\left\{\frac{Q C}{\sqrt{(Q C)^{2}+(B Q)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{Q C}{\sqrt{(Q C)^{2}+(B Q)^{2}}}\right)\left(\frac{P_{2} B}{\sqrt{\left(P_{2} B\right)^{2}+(B Q)^{2}}}\right)\right\}
$$

Similarly, solid angle subtended by the right $\triangle B Q A$ at the the same point $P_{2}(0,0, h)$

$$
\omega_{\triangle B Q A}=\sin ^{-1}\left\{\frac{Q A}{\sqrt{(Q A)^{2}+(B Q)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{Q A}{\sqrt{(Q A)^{2}+(B Q)^{2}}}\right)\left(\frac{P_{2} B}{\sqrt{\left(P_{2} B\right)^{2}+(B Q)^{2}}}\right)\right\}
$$

Hence, the solid angle subtended by obtuse $\triangle A B C$ at the the given point $\boldsymbol{P}_{\mathbf{2}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ is calculated as

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle B Q C}-\omega_{\triangle B Q A}
$$

Similarly, for the location of given point $\boldsymbol{P}_{\mathbf{3}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ lying at a normal height h from the vertex ' C ' (i.e. foot of perpendicular drawn from the point $P_{3}(0,0, h)$ to the plane of $\triangle A B C$) (See figure 7 above)

Following the above procedure, solid angle subtended by obtuse $\triangle A B C$ at the the given point $\boldsymbol{P}_{\mathbf{3}}(\mathbf{0}, \mathbf{0}, \boldsymbol{h})$ is calculated as

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle C N B}-\omega_{\triangle C N A} \quad(\text { obtuse } \triangle A B C \text { is externally divided })
$$

where, $\omega_{\triangle C N B}=\sin ^{-1}\left\{\frac{B N}{\sqrt{(B N)^{2}+(C N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B N}{\sqrt{(B N)^{2}+(C N)^{2}}}\right)\left(\frac{P_{3} C}{\sqrt{\left(P_{3} C\right)^{2}+(C N)^{2}}}\right)\right\}$ \&

$$
\Rightarrow \omega_{\triangle C N A}=\sin ^{-1}\left\{\frac{A N}{\sqrt{(A N)^{2}+(C N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A N}{\sqrt{(A N)^{2}+(C N)^{2}}}\right)\left(\frac{P_{3} C}{\sqrt{\left(P_{3} C\right)^{2}+(C N)^{2}}}\right)\right\}
$$

Now, we will apply the same procedure in case of any polygonal plane by diving it into the elementary triangles with common vertex at the F.O.P. \& then each elementary triangle into two sub-elementary right triangles with common vertex at the F.O.P. Now, it's easy to understand the theory of polygon

VI. Axiom of polygon

"For a given point in the space, each of the polygons can be divided internally or externally or both w.r.t. foot of perpendicular (F.O.P.) drawn from the given point to the plane of polygon into a certain number of the elementary triangles, having a common vertex at the foot of perpendicular, by joining all the vertices of polygon to the F.O.P. by straight lines (generally extended)."

- Polygon is externally divided if the F.O.P. lies outside the boundary
- Polygon is divided internally or externally or both if the F.O.P. lies inside or on the boundary depending on the geometrical shape of polygon (i.e. angles \& sides)
(See the different cases in the figures (8), (9), (10) \& (11) below as explained in Theory of Polygon)

Elementary Triangle: Any of the elementary triangles obtained by joining all the vertices of polygon to the foot of perpendicular drawn from the given point to the plane of polygon such that all the elementary triangles have common vertex at the foot of perpendicular (F.O.P.) is called elementary triangle.

Sub-elementary Right Triangles: These are the right triangles which are obtained by drawing a perpendicular from F.O.P. to the opposite side in any of the elementary triangles. Thus one elementary triangle is internally or externally divided into two sub-elementary right triangles. These sub-elementary right triangles always have common vertex at the foot of perpendicular (F.O.P.)

VII. HCR's Theory of Polygon
 (Proposed by the Author-2014)

This theory is applicable for any polygonal plane (i.e. plane bounded by the straight lines only) \& any point in the space if the following parameters are already known

1. Geometrical shape \& dimensions of the polygonal plane

2. Normal distance (h) of the given point from the plane of polygon

3. Location of foot of perpendicular (F.O.P.) drawn from given point to the plane of polygon

According to this theory "Solid angle subtended by any polygonal plane at any point in the space is the algebraic sum of solid angles subtended at the same point by all the elementary triangles (obtained by joining all the vertices of polygon to the foot of perpendicular) having common vertex at the foot of perpendicular drawn from the given point to the plane of polygon such that algebraic sum of areas of all these triangles is equal to the area of given polygon." It has no mathematical proof.

Mathematically, solid angle ($\omega_{\text {polygon }}$) subtended by any polygonal plane with ' n ' number of sides \& area ' A ' at any point in the space is given by

$$
\begin{gathered}
\omega_{\text {polygon }}=\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}+\omega_{5} \cdots \cdots \cdots \cdots \cdots \cdots \\
\Rightarrow \boldsymbol{\omega}_{\text {polygon }}=\left[\sum \boldsymbol{\omega}_{\boldsymbol{i}}\right]_{\text {algebraic }} \\
\text { where, } A_{\text {polygon }}=A_{1}+A_{2}+A_{3}+A_{4}+A_{5} \ldots \ldots \ldots \ldots \ldots \ldots=\left[\sum \boldsymbol{A}_{\boldsymbol{i}}\right]_{\text {algebraic }}
\end{gathered}
$$

$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, \ldots \ldots$. are the areas of elementary triangles subtending the solid angles $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4} . \omega_{5} \ldots \ldots$ at the given point which are determined by using standard formula-1 (as given from eq(1)) along with the necessary dimensions which are found out analytically or by tracing the diagram which is easier.

- Element Method: It the method of diving a polygon internally or externally into sub-elementary right triangles having common vertex at the F.O.P. drawn from the given point to the plane of polygon such that algebraic sum of areas of all these triangles is equal to the area of given polygon."
- Working Steps:

STEP 1: Trace/draw the diagram of the given polygon (plane) with known geometrical dimensions.
STEP 2: Specify the location of foot of perpendicular drawn from a given point to the plane of polygon.
STEP 3: Join all the vertices of polygon to the foot of perpendicular by the extended straight lines. Thus the polygon is divided into a number of elementary triangles having a common vertex at the foot of perpendicular.

STEP 4: Further, consider each elementary triangle \& divide it internally or externally into two sub-elementary right triangles simply by drawing a perpendicular from F.O.P. (i.e. common vertex) to the opposite side of that elementary triangle.

STEP 5: Now, find out the area of given polygon as the algebraic sum of areas of all these sub-elementary right triangles i.e. area of each of right triangles must be taken with proper sign whose sum gives area of polygon.

Remember: All the elementary triangles \& sub-elementary right triangles must have their one vertex common at the foot of perpendicular (F.O.P.).

STEP 6: Replace areas of all these sub-elementary right triangles by their respective values of solid angle subtended at the given point in the space.

STEP 7: Calculate solid angle subtended by each of individual sub-elementary right triangles by using the standard formula-1 of right triangle (from eq(1) as derived above) as follows

$$
\omega=\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+p^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\}
$$

STEP 8: Now, solid angle subtended by polygonal plane at the given point will be the algebraic sum of all its individual sub-elementary right triangles as given (By Element Method)

$$
\omega_{\text {polygon }}=\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}+\omega_{5}+\ldots \ldots \ldots \ldots
$$

* Finally, we get the value of $\boldsymbol{\omega}_{\text {polygon }}$ as the algebraic sum of solid angles subtended by right triangles only.

VIII. Special Cases for a Polygonal Plane

Let's us consider a polygonal plane (with vertices) 123456 \& a given point say $P(0,0, h)$ at a normal height h from the given plane in the space.

Now, specify the location of foot of perpendicular say ' O ' on the plane of polygon which may lie

1. Outside the boundary

2. Inside the boundary
3. On the boundary
a. On one of the sides or b. At one of the vertices

Let's consider the above cases one by one as follows

1. F.O.P. outside the boundary:

Let the foot of perpendicular ' O ' lie outside the boundary of polygon. Join all the vertices of polygon (plane) 123456 to the foot of perpendicular ' O ' by the extended straight lines
(As shown in the figure 8) Thus the polygon is divided into elementary triangles (obtained by the extension lines), all

Fig 8: F.O.P. lying outside the boundary having common vertex at the foot of perpendicular ' O '.
Now the solid angle subtended by the polygonal plane at the given point ' P ' in the space is given
By Element-Method

$$
\begin{gather*}
\omega_{123456}=\omega_{616 \prime}+\omega_{566 \prime 5 \prime}+\omega_{22 \prime 55 \prime}+\omega_{4 \prime 42 \prime 2}+\omega_{344 \prime} \tag{I}\\
\text { where, } \omega_{616 \prime}=\omega_{6 \prime 01}-\omega_{601} \\
\omega_{566 \prime 5 \prime}=\omega_{5 \prime 06 \prime}-\omega_{506} \omega_{22^{\prime} 55 \prime}=\omega_{2 O 5 \prime}-\omega_{2^{\prime} O 5} \\
\omega_{4 \prime 42 \prime 2}=\omega_{4^{\prime} O 2}-\omega_{402 \prime} \\
\omega_{344 \prime}=\omega_{3 O 4 \prime}-\omega_{3 O 4}
\end{gather*}
$$

Thus, the value of solid angle subtended by the polygon at the given point is obtained by setting these values in the eq. (I) as follows

$$
\Rightarrow \quad \omega_{123456}=\left(\omega_{6 \prime 01}-\omega_{601}\right)+\left(\omega_{5 \prime 06^{\prime}}-\omega_{506}\right)+\left(\omega_{205^{\prime}}-\omega_{2^{\prime} 05}\right)+\left(\omega_{4^{\prime} 02}-\omega_{402 \prime}\right)
$$

Further, each of the individual elementary triangles is divided into two sub-elementary right triangles for which the values of solid angle are determined by using standard formula-1 of right triangle.

2. F.O.P. inside the boundary:

Let the foot of perpendicular ' O ' lie inside the boundary of polygon. Join all the vertices of polygon (plane) 123456 to the foot of perpendicular ' O ' by the extended straight lines (As shown in the figure 9)

Thus the polygon is divided into elementary triangles (obtained by the extension lines), all having common vertex at the foot of perpendicular ' O '. Now the solid angle subtended by the polygonal plane at the given point P in the space is given

By Element-Method
$\omega_{123456}=$

Figure 9: F.O.P. lying inside the boundary

$$
\begin{equation*}
\omega_{1 O 2}+\omega_{2 O 3}+\omega_{3 O 5 \prime}+\omega_{5 \prime 54}+\omega_{504 \prime} \tag{II}
\end{equation*}
$$

Where,

$$
\omega_{5 / 54}=\omega_{5^{\prime} 04}-\omega_{504}
$$

Thus, the value of solid angle subtended by the polygon at the given point is obtained by setting these values in the eq. (II) as follows

$$
\Rightarrow \quad \omega_{123456}=\omega_{102}+\omega_{203}+\omega_{305^{\prime}}+\left(\omega_{5^{\prime} 04}-\omega_{504}\right)+\omega_{504 \prime}
$$

Further, each of the individual elementary triangles is divided into two sub-elementary right triangles for which the values of solid angle are determined by using standard formula-1 of right triangle.
3. F.O.P. on the boundary: Further two cases are possible

a. F.O.P. lying on one of the sides:

Let the foot of perpendicular ' O ' lie on one of the sides say ' 12 ' of polygon. Join all the vertices of polygon (plane) 123456 to the foot of perpendicular ' O ' by the straight lines
(As shown in the figure 10)
Thus the polygon is divided into elementary triangles (obtained by the straight lines), all having common vertex at the foot of perpendicular

Figure 10: F.O.P. lying at one of the sides ' O '. Now the solid angle subtended by the polygonal plane at the given point ' P ' in the space is given By Element-Method

$$
\begin{equation*}
\omega_{123456}=\omega_{106}+\omega_{605}+\omega_{504}+\omega_{403}+\omega_{302} \tag{III}
\end{equation*}
$$

Further, each of the individual elementary triangles is divided into two sub-elementary right triangles for which the values of solid angle are determined by using standard formula-1 of right triangle.
b. F.O.P. lying at one of the vertices:

Let the foot of perpendicular lie on one of the vertices say ' 5 ' of polygon. Join all the vertices of polygon (plane) 123456 to the foot of perpendicular (i.e. common vertex ' 5 ') by the straight lines
(As shown in the figure 11)
Thus the polygon is divided into elementary triangles (obtained by the straight lines), all having common vertex at the foot of perpendicular ' 5 '. Now the solid angle subtended by the polygonal plane at the given point ' P ' in the space is given

By Element-Method
Fig 11: F.O.P. lying on one of the vertices

$$
\begin{equation*}
\omega_{123456}=\omega_{152}+\omega_{253}+\omega_{354}+\omega_{156} \tag{IV}
\end{equation*}
$$

Further, each of the individual elementary triangles is divided into two sub-elementary right triangles for which the values of solid angle are determined by using standard formula-1 of right triangle.

IX. Analytical Applications of Theory of Polygon

Let's take some examples of polygonal plane to find out the solid angle at different locations of a given point in the space. For ease of understanding, we will take some particular examples where division of polygons into right triangles is easier \& standard formula can directly be applied by analytical measurements of necessary dimensions i.e. drawing is not required. Although, random location of point may cause complex calculations

- Right Triangular Plane

F.O.P. lying on the right angled vertex: Let there be a right triangular plane $A B C$ having orthogonal sides $A B=$ $a \& B C=b$ \& a given point say $P(0,0, h)$ at a normal height h from the right angled vertex ' B '
(As shown in the figure 12 below)

Now, draw a perpendicular BN from the vertex ' B ' to the hypotenuse AC to divide the right $\triangle A B C$ into elementary right triangles $\triangle A N B \& \triangle B N C$. By element method, solid angle subtended by the right $\triangle A B C$ at the given point P

$$
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A N B}+\omega_{\triangle B N C}
$$

Where, the values of $\omega_{\triangle A N B} \& \omega_{\triangle B N C}$ are calculated by standard formula-1 as follows

Fig 12: Point P lying on the normal axis passing through the right angled vertex B

Values of BN, AN \& CN can be easily calclated as follows

$$
B N=\frac{a b}{\sqrt{a^{2}+b^{2}}}, \quad A N=\frac{a^{2}}{\sqrt{a^{2}+b^{2}}} \& C N=\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}
$$

$$
\therefore \omega_{\triangle A N B}=\sin ^{-1}\left\{\frac{A N}{\sqrt{(A N)^{2}+(B N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A N}{\sqrt{(A N)^{2}+(B N)^{2}}}\right)\left(\frac{P B}{\sqrt{(P B)^{2}+(B N)^{2}}}\right)\right\}
$$

$$
\begin{gathered}
=\sin ^{-1}\left\{\frac{\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}}{\sqrt{\left(\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}\right)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}}{\sqrt{\left(\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}\right)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}}\right)\left(\frac{h}{\left.\sqrt{(h)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}\right)}\right\}\right. \\
\Rightarrow \omega_{\triangle A N B}=\sin ^{-1}\left\{\frac{a}{\sqrt{a^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\frac{a h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right\}
\end{gathered}
$$

Similarly, we can calculate solid angle subtended by the $\triangle C N B$ at the given point $P(0,0, h)$

$$
\left.\left.\begin{array}{c}
\omega_{\triangle C N B}=\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(B N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(B N)^{2}}}\right)\left(\frac{P B}{\sqrt{(P B)^{2}+(B N)^{2}}}\right)\right\} \\
=\sin ^{-1}\left\{\frac{\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}}{\sqrt{\left(\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}\right)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}}{\left.\left.\sqrt{\left(\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}\right)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}\right)\left(\sqrt{(h)^{2}+\left(\frac{a b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}\right)\right\}}\right.\right. \\
\Rightarrow \omega_{\triangle C N B}=\sin ^{-1}\left\{\frac{b}{\sqrt{a^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\frac{b h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right.
\end{array}\right)\right\}
$$

Hence, the solid angle subtended by given right $\triangle A B C$ at the given point $P(0,0, h)$ lying at a normal height h from the right angled vertex ' B ' is calculated as follows

$$
\begin{gathered}
\Rightarrow \omega_{\triangle A B C}=\omega_{\triangle A N B}+\omega_{\triangle C N B} \\
=\sin ^{-1}\left\{\frac{a}{\sqrt{a^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\frac{a h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right\}+\sin ^{-1}\left\{\frac{b}{\sqrt{a^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\frac{b h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right\} \\
=\left[\sin ^{-1}\left\{\frac{a}{\sqrt{a^{2}+b^{2}}}\right\}+\sin ^{-1}\left\{\frac{b}{\sqrt{a^{2}+b^{2}}}\right\}\right]-\left[\sin ^{-1}\left\{\frac{a h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right\}+\sin ^{-1}\left\{\frac{b h}{\sqrt{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}}\right\}\right]
\end{gathered}
$$

Using, $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) \forall(-1 \leq(x, y) \leq 1) \&$ simplifying, we get

$$
\begin{align*}
\Rightarrow \omega_{\triangle A B C} & =\sin ^{-1}\left\{\frac{a^{2}+b^{2}}{a^{2}+b^{2}}\right\}-\sin ^{-1}\left\{\frac{h\left(a^{2} \sqrt{h^{2}+b^{2}}+b^{2} \sqrt{h^{2}+a^{2}}\right)}{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}\right\} \\
& =\frac{\pi}{2}-\sin ^{-1}\left\{\frac{h\left(a^{2} \sqrt{h^{2}+b^{2}}+b^{2} \sqrt{h^{2}+a^{2}}\right)}{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}\right\} \\
\therefore \boldsymbol{\omega}_{\triangle A B C} & =\cos ^{-1}\left\{\frac{\boldsymbol{h}\left(\boldsymbol{a}^{2} \sqrt{\boldsymbol{h}^{2}+\boldsymbol{b}^{2}}+\boldsymbol{b}^{2} \sqrt{\boldsymbol{h}^{2}+\boldsymbol{a}^{2}}\right)}{\boldsymbol{h}^{2}\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\right)+\boldsymbol{a}^{2} \boldsymbol{b}^{2}}\right\} \quad \ldots \ldots \ldots \ldots \tag{3}
\end{align*}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a right triangular plane, with orthogonal sides $\boldsymbol{a} \& \boldsymbol{b}$, at any point lying at a normal height h from the right angled vertex.

- Rectangular Plane

F.O.P. lying on one of the vertices of rectangular plane: Let there be a rectangular plane ABCD having length $A B=l \&$ width $B C=b$

\& a given point say $P(0,0, h)$ at a normal height h from any of the vertices say vertex ' A '
Now, draw a perpendicular PA from the given point ' P ' to the plane of rectangle ABCD passing through the vertex A (i.e. foot of perpendicular). Join the vertex ' C ' to the F.O.P. ' A ' to divide the plane into elementary triangles I.e. right triangles $\triangle A B C \& \triangle A D C$.

It is clear from the figure (13) that the area of rectangle ABCD
$A_{A B C D}=A_{\triangle A B C}+A_{\triangle A D C}$
Hence, using Element Method by replacing areas by corresponding values of solid angles, the solid angle subtended by the rectangular

Fig 13: Point P lying on the normal axis passing through one of the vertices of rectangular plane plane $A B C D$ at the given point P
$\omega_{A B C D}=\omega_{\triangle A B C}+\omega_{\triangle A D C}$
Now, using standard formula-1, solid angle subtended by the right $\triangle A B C$ at the point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle A B C} & =\sin ^{-1}\left\{\frac{B C}{\sqrt{(B C)^{2}+(A B)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B C}{\sqrt{(B C)^{2}+(A B)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A B)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+l^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+l^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+l^{2}}}\right)\right\} \& \\
\omega_{\triangle A D C} & =\sin ^{-1}\left\{\frac{C D}{\sqrt{(C D)^{2}+(A D)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C D}{\sqrt{(C D)^{2}+(A D)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A D)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+b^{2}}}\right)\right\}
\end{aligned}
$$

Hence, the solid angle subtended by rectangular plane ABCD at the given point $P(0,0, h)$ lying at a normal height h from vertex A

$$
\omega_{A B C D}=\omega_{\triangle A B C}+\omega_{\triangle A D C}
$$

$$
\begin{aligned}
& =\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+l^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+l^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+l^{2}}}\right)\right\}+\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+b^{2}}}\right)\right\} \\
& =\left[\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}+\sin ^{-1}\left\{\frac{b}{\sqrt{b^{2}+l^{2}}}\right\}\right]-\left[\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+b^{2}}}\right)\right\}+\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+l^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+l^{2}}}\right)\right\}\right]
\end{aligned}
$$

Using, $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) \forall(-1 \leq(x, y) \leq 1) \&$ simplifying, we get

$$
\begin{aligned}
\Rightarrow \omega_{A B C D} & =\sin ^{-1}\left\{\frac{l^{2}+b^{2}}{l^{2}+b^{2}}\right\}-\sin ^{-1}\left\{\frac{h\left(l^{2}+b^{2}\right) \sqrt{l^{2}+b^{2}+h^{2}}}{\left(l^{2}+b^{2}\right) \sqrt{l^{2}+h^{2}} \sqrt{b^{2}+h^{2}}}\right\} \\
& =\frac{\pi}{2}-\sin ^{-1}\left\{\frac{h \sqrt{l^{2}+b^{2}+h^{2}}}{\sqrt{l^{2}+h^{2}} \sqrt{b^{2}+h^{2}}}\right\}=\cos ^{-1}\left\{\frac{h \sqrt{l^{2}+b^{2}+h^{2}}}{\sqrt{l^{2}+h^{2}} \sqrt{b^{2}+h^{2}}}\right\}=\sin ^{-1}\left\{\frac{l b}{\sqrt{l^{2}+h^{2}} \sqrt{b^{2}+h^{2}}}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \omega_{A B C D}=\sin ^{-1}\left\{\frac{l b}{\sqrt{\left(l^{2}+h^{2}\right)\left(b^{2}+h^{2}\right)}}\right\} \tag{4}
\end{equation*}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a rectangular plane of size $a \times b$ at any point lying at a normal height h from any of the vertices.
F.O.P. lying on the centre of rectangular plane: Let the given point $P(0,0, h)$ be lying at a normal height h from the centre 'O' (i.e. F.O.P.) of rectangular plane ABCD. Join all the vertices A, B, C, D to the F.O.P. 'O'.

Thus, rectangle $A B C D$ is divided into four elementary triangles $\triangle A O B, \triangle B O C, \triangle C O D \& \triangle A O D$. Hence, Area of rectangle $A B C D$

$$
\begin{aligned}
\Rightarrow A_{A B C D} & =A_{\triangle A O B}+A_{\triangle B O C}+A_{\triangle C O D}+A_{\triangle A O D} \\
& =2\left(A_{\triangle A O B}+A_{\triangle A O D}\right) \quad \text { By symmetry }
\end{aligned}
$$

Now, draw perpendiculars OE \& OF from the F.O.P. 'O' to the opposite sides AB in $\triangle A O B \& A D$ in $\triangle A O D$ to divide them into subelementary right triangles $\triangle O E A, \triangle O E B$ in $\triangle A O B$ \&

Fig 14: Point P lying on the normal axis passing through the centre of rectangular plane
$\triangle O F A, \triangle O F D$ in $\triangle A O D$

$$
\Rightarrow A_{A B C D}=2 \times 2\left(A_{\triangle O E A}+A_{\triangle O F A}\right)=4\left(A_{\triangle O E A}+A_{\triangle O F A}\right) \quad \text { By symmetry }
$$

Hence, using Element Method by replacing areas by corresponding values of solid angles, the solid angle subtended by the rectangular plane $A B C D$ at the given point P
$\omega_{A B C D}=4\left(\omega_{\triangle O E A}+\omega_{\triangle O F A}\right)$
Now, using standard formula-1, solid angle subtended by the right $\triangle O E A$ at the point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle O E A} & =\sin ^{-1}\left\{\frac{A E}{\sqrt{(A E)^{2}+(O E)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A E}{\sqrt{(A E)^{2}+(O E)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O E)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{\left(\frac{l}{2}\right)}{\left.\sqrt{\left(\frac{l}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}\right)}\right\}-\sin ^{-1}\left\{\left(\frac{\left(\frac{l}{2}\right)}{\sqrt{\left(\frac{l}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{b}{2}\right)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+b^{2}}}\right)\right\} \& \\
\omega_{\triangle O F A} & =\sin ^{-1}\left\{\frac{A F}{\sqrt{(A F)^{2}+(O F)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A F}{\sqrt{(A F)^{2}+(O F)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O F)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{\left(\frac{b}{2}\right)}{\left.\sqrt{\left(\frac{b}{2}\right)^{2}+\left(\frac{l}{2}\right)^{2}}\right\}-\sin ^{-1}\left\{\left(\frac{\left(\frac{b}{2}\right)}{\sqrt{\left(\frac{b}{2}\right)^{2}+\left(\frac{l}{2}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{l}{2}\right)^{2}}}\right)\right\}}\right\} \\
& =\sin ^{-1}\left\{\frac{b}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+l^{2}}}\right)\right\}
\end{aligned}
$$

Hence, the solid angle subtended by rectangular plane ABCD at the given point $P(0,0, h)$ lying at a normal height h from vertex A

$$
\begin{gathered}
\omega_{A B C D}=4\left(\omega_{\triangle O E A}+\omega_{\triangle O F A}\right) \\
=4\left[\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+b^{2}}}\right)\right\}+\sin ^{-1}\left\{\frac{b}{\sqrt{l^{2}+b^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+l^{2}}}\right)\right\}\right]
\end{gathered}
$$

$$
=4\left[\sin ^{-1}\left\{\frac{l}{\sqrt{l^{2}+b^{2}}}\right\}+\sin ^{-1}\left\{\frac{b}{\sqrt{l^{2}+b^{2}}}\right\}\right]-4\left[\sin ^{-1}\left\{\left(\frac{l}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+b^{2}}}\right)\right\}+\sin ^{-1}\left\{\left(\frac{b}{\sqrt{l^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+l^{2}}}\right)\right\}\right]
$$

Using, $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) \forall(-1 \leq(x, y) \leq 1) \&$ simplifying, we get

$$
\begin{align*}
& \Rightarrow \omega_{A B C D}= 4\left[\sin ^{-1}\left\{\frac{l^{2}+b^{2}}{l^{2}+b^{2}}\right\}-\sin ^{-1}\left\{\frac{2 h\left(l^{2}+b^{2}\right) \sqrt{l^{2}+b^{2}+4 h^{2}}}{\left(l^{2}+b^{2}\right) \sqrt{l^{2}+4 h^{2}} \sqrt{b^{2}+4 h^{2}}}\right\}\right] \\
&=4\left[\frac{\pi}{2}-\sin ^{-1}\left\{\frac{2 h \sqrt{l^{2}+b^{2}+4 h^{2}}}{\sqrt{l^{2}+4 h^{2}} \sqrt{b^{2}+4 h^{2}}}\right\}\right] \\
&=4 \cos ^{-1}\left\{\frac{2 h \sqrt{l^{2}+b^{2}+4 h^{2}}}{\sqrt{l^{2}+4 h^{2}} \sqrt{b^{2}+4 h^{2}}}\right\}=4 \sin ^{-1}\left\{\frac{l b}{\sqrt{l^{2}+4 h^{2}} \sqrt{b^{2}+4 h^{2}}}\right\} \\
& \therefore \quad \boldsymbol{\omega}_{A B C D}=\mathbf{4} \sin ^{-1}\left\{\frac{\boldsymbol{l} \boldsymbol{b}}{\sqrt{\left(\boldsymbol{l}^{2}+4 \boldsymbol{h}^{2}\right)\left(\boldsymbol{b}^{2}+4 \boldsymbol{h}^{2}\right)}}\right\} \tag{5}
\end{align*}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a rectangular plane of size $a \times b$ at any point lying at a normal height h from the centre.

- Rhombus-like Plane

Let there be a rhombus-like plane $A B C D$ having diagonals $A C=2 d_{1} \& B D=2 d_{2}$ bisecting each other at right angle at the centre ' O ' and a given point say $P(0,0, h)$ at a height ' h ' lying on the normal axis passing through the centre ' O ' (i.e. foot of perpendicular) (See the figure 15)

Join all the vertices A, B, C \& D to the F.O.P. to divide the rhombus ABCD into elementary right triangles $\triangle A O B, \triangle B O C, \triangle C O D \& \triangle A O D$. Now, area of rhombus ABCD

$$
\begin{aligned}
\Rightarrow A_{A B C D} & =A_{\triangle A O B}+A_{\triangle B O C}+A_{\triangle C O D}+A_{\triangle A O D} \\
& =4\left(A_{\triangle A O B}\right) \quad \text { By symmetry }
\end{aligned}
$$

Fig 15: Point P lying on the normal axis passing through the centre of rhombus

Hence, using Element Method by replacing area by corresponding value of solid angle, the solid angle subtended by the rhombus-like plane $A B C D$ at the given point P.

$$
\omega_{A B C D}=4 \omega_{\triangle A O B}
$$

From eq(3), we know that solid angle subtended by a right triangular plane at any point lying on the vertical passing though right angled vertex is given as

$$
\omega=\cos ^{-1}\left\{\frac{h\left(a^{2} \sqrt{h^{2}+b^{2}}+b^{2} \sqrt{h^{2}+a^{2}}\right)}{h^{2}\left(a^{2}+b^{2}\right)+a^{2} b^{2}}\right\}
$$

On setting, $a=d_{1} \& b=d_{2}$ in the above equation, we get

Hence, the solid angle subtended by rhombus-like plane ABCD at the given point $P(0,0, h)$ lying at a normal height h from centre ' O '

$$
\begin{equation*}
\Rightarrow \omega_{A B C D}=4 \cos ^{-1}\left\{\frac{h\left(d_{1}{ }^{2} \sqrt{h^{2}+d_{2}^{2}}+{d_{2}}^{2} \sqrt{h^{2}+d_{1}}{ }^{2}\right.}{h^{2}\left({d_{1}}^{2}+{d_{2}}^{2}\right)+{d_{1}}^{2}{d_{2}}^{2}}\right\} \tag{6}
\end{equation*}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a rhombus-like plane having diagonals $2 d_{1} \& 2 d_{2}$ at any point lying at a normal height h from the centre.

- Regular Polygonal Plane

Let there be a regular polygonal plane $A_{1} A_{2} A_{3} \ldots . A_{n}$ having ' n ' no. of the sides each equal to the length ' a ' $\&$ a given point say $P(0,0, h)$ at a height ' h ' lying on the normal height h from the centre ' 0 '. (i.e. foot of perpendicular) (See the figure 16)

Join all the vertices $A_{1}, A_{2}, A_{3}, \ldots . . \& A_{n}$ to the F.O.P. 'O' to divide the polygon into elementary triangles $\Delta O A_{1} A_{2}, \Delta O A_{2} A_{3}, \ldots \ldots \ldots \ldots, \Delta O A_{n-1} A_{n}$ which are congruent hence the area of polygon

$$
\begin{aligned}
A_{\text {reg.poly. }} & =A_{\triangle O A_{1} A_{2}}+A_{\triangle O A_{2} A_{3}}+A_{\triangle O A_{3} A_{4}}+\ldots \ldots \ldots+A_{\triangle O A_{n} A_{1}} \\
& =n\left(A_{\Delta O A_{1} A_{2}}\right)=n\left(A_{\Delta O M A_{1}}+A_{\Delta O M A_{2}}\right)
\end{aligned}
$$

* ' n 'sided regular
polygon
Fig 16: Point P lying on the normal axis passing through the centre of regular polygonal

Now, draw a perpendicular $O M$ from F.O.P. ' O ' to opposite side $A_{1} A_{2}$ to divide $\Delta O A_{1} A_{2}$ into two subelementary right triangles $\triangle O M A_{1} \& \triangle O M A_{2}$ which are congruent. Hence area of polygon

$$
A_{\text {reg.poly. }}=n \times 2\left(A_{\triangle O M A_{1}}\right)=2 n\left(A_{\triangle O M A_{1}}\right)
$$

Hence, using Element Method by replacing area by corresponding value of solid angle, the solid angle subtended by the regular polygonal plane $A_{1} A_{2} A_{3} \ldots A_{n}$ at the given point P .

$$
\omega_{A B C D}=2 n\left(\omega_{\triangle O M A_{1}}\right)
$$

Now, using standard formula-1, solid angle subtended by the right $\triangle O M A_{1}$ at the point $P(0,0, h)$

$$
\omega_{\triangle O M A_{1}}=\sin ^{-1}\left\{\frac{A_{1} M}{\sqrt{\left(A_{1} M\right)^{2}+(O M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A_{1} M}{\sqrt{\left(A_{1} M\right)^{2}+(O M)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O M)^{2}}}\right)\right\}
$$

Now, setting the corresponding values in above expression as follows

$$
\begin{gathered}
A_{1} M=\frac{a}{2}, \quad O M=\frac{a}{2} \cot \frac{\pi}{n} \& P O=h, \text { we have } \\
\omega_{\triangle O M A_{1}}=\sin ^{-1}\left\{\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \cot \frac{\pi}{n}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \cot \frac{\pi}{n}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{a}{2} \cot \frac{\pi}{n}\right)^{2}}}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \frac{\pi}{n}}\right\}-\sin ^{-1}\left\{\left(\frac{1}{\operatorname{cosec} \frac{\pi}{n}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right)\right\} \\
& =\sin ^{-1}\left\{\sin \frac{\pi}{n}\right\}-\sin ^{-1}\left\{\frac{2 h \sin \frac{\pi}{n}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right\}=\frac{\pi}{n}-\sin ^{-1}\left\{\frac{2 h \sin \frac{\pi}{n}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right\}
\end{aligned}
$$

Hence, the solid angle subtended by regular polygonal plane $A_{1} A_{2} A_{3} \ldots . A_{n}$ at the given point $P(0,0, h)$ lying at a normal height h from centre ' O '

$$
\begin{align*}
& =2 n\left[\frac{\pi}{n}-\sin ^{-1}\left\{\frac{2 h \sin \frac{\pi}{n}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right\}\right] \\
\Rightarrow \omega_{\text {reg.poly. }} & =2 \pi-2 n \sin ^{-1}\left\{\frac{2 h \sin \frac{\pi}{n}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right\} \forall n \geq 3 \tag{7}
\end{align*}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a regular polygonal plane, having n number of sides each of length a, at any point lying at a normal height h from the centre.

- Regular Pentagonal Plane

Let there be a regular pentagonal plane $A B C D E$ having each side of length a and a given point say $P(0,0, h)$ lying at a normal height ' h ' from the centre ' O ' (i.e. foot of perpendicular) (See figure 17)

Join all the vertices $A, B, C, D \& E$ to the F.O.P. ' O ' to divide the pentagon ABCDE into elementary triangles $\triangle A B C, \triangle A C D \& \triangle A D E$.

Now, draw perpendiculars AN, AQ \& AM to the opposite sides BC, $C D \& D E$ in $\triangle A B C, \triangle A C D$ \& $\triangle A D E$ respectively to divide each elementary triangle into two right triangles. Hence the area of regular pentagon
$A_{\text {reg.penta }}=2\left(A_{\triangle A B C}+A_{\triangle A Q C}\right)$ by symmetry
$=2\left(A_{\triangle A N C}-A_{\triangle A N B}+A_{\triangle A Q C}\right) \quad\left(A_{\triangle A B C}=A_{\triangle A N C}-A_{\triangle A N B}\right)$

Fig 17: Point P lying on the normal axis passing through the vertex A of regular pentagon

Hence, using Element Method by replacing areas by corresponding values of solid angle, the solid angle subtended by the regular pentagonal plane $A B C D E$ at the given point P.

$$
\omega_{\text {reg.penta. }}=2\left(\omega_{\triangle A N C}-\omega_{\triangle A N B}+\omega_{\triangle A Q C}\right)=2\left(\omega_{\triangle A N C}+\omega_{\triangle A Q C}-\omega_{\triangle A N B}\right)=
$$

Necessary dimensions can be calculated by the figure as follows

$$
A N=a \cos 18^{\circ}, \quad B N=a \sin 18^{\circ}, \quad C N=a+a \sin 18^{\circ} \quad \& \quad A Q=\frac{a}{2} \cot 18^{\circ}
$$

Now, using standard formula-1, solid angle subtended by the right $\triangle A N C$ at the point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle A N C} & =\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{a+a \sin 18^{o}}{\sqrt{\left(a+a \sin 18^{o}\right)^{2}+\left(a \cos 18^{o}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{a+a \sin 18^{o}}{\sqrt{\left(a+a \sin 18^{o}\right)^{2}+\left(a \cos 18^{\circ}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(a \cos 18^{\circ}\right)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1+\sin 18^{o}}{\sqrt{2\left(1+\sin 18^{o}\right)}}\right\}-\sin ^{-1}\left\{\left(\frac{1+\sin 18^{o}}{\sqrt{2\left(1+\sin 18^{o}\right)}}\right)\left(\frac{h}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)\right\} \\
& =\sin ^{-1}\left\{\sqrt{\frac{1+\sin 18^{o}}{2}}\right\}-\sin ^{-1}\left\{\left(\sqrt{\frac{1+\sin 18^{o}}{2}}\right)\left(\frac{h}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)\right\} \\
\omega_{\triangle A N C} & =\frac{3 \pi}{10}-\sin ^{-1}\left(\frac{h \cos 36^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)
\end{aligned}
$$

Similarly, we get solid angle subtended by right $\triangle A N B$ at the given point ' P '

$$
\begin{aligned}
\omega_{\triangle A N B}= & \sin ^{-1}\left\{\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
= & \sin ^{-1}\left\{\frac{a \sin 18^{o}}{\sqrt{\left(a \sin 18^{o}\right)^{2}+\left(a \cos 18^{o}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{a \sin 18^{o}}{\sqrt{\left(a \sin 18^{o}\right)^{2}+\left(a \cos 18^{o}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(a \cos 18^{o}\right)^{2}}}\right)\right\} \\
= & \sin ^{-1}\left\{\sin 18^{\circ}\right\}-\sin ^{-1}\left\{\left(\sin 18^{o}\right)\left(\frac{h}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)\right\} \\
& \omega_{\triangle A N B}=\frac{\pi}{10}-\sin ^{-1}\left(\frac{h \sin 18^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)
\end{aligned}
$$

Similarly, we get solid angle subtended by right $\triangle A Q C$ at the given point ' P '

$$
\begin{aligned}
\omega_{\triangle A Q C} & =\sin ^{-1}\left\{\frac{C Q}{\sqrt{(C Q)^{2}+(A Q)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C Q}{\sqrt{(C Q)^{2}+(A Q)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A Q)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{\frac{a}{2}}{\left.\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \cot 18^{o}\right)^{2}}\right)}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \cot 18^{o}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{a}{2} \cot 18^{o}\right)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} 18^{o}}\right\}-\sin ^{-1}\left\{\left(\frac{1}{\operatorname{cosec} 18^{o}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+a^{2} \cot ^{2} 18^{o}}}\right)\right\} \\
& =\frac{\pi}{10}-\sin ^{-1}\left(\frac{2 h \sin 18^{o}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} 18^{o}}}\right)
\end{aligned}
$$

Hence on setting the corresponding values, solid angle subtended by the regular pentagonal plane ABCDE at the given point P is given as

$$
\omega_{\text {reg.penta. }}=2\left[\omega_{\triangle A N C}+\omega_{\triangle A Q C}-\omega_{\triangle A N B}\right]
$$

$$
\begin{aligned}
& =2\left[\frac{3 \pi}{10}-\sin ^{-1}\left(\frac{h \cos 36^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)+\frac{\pi}{10}-\sin ^{-1}\left(\frac{2 h \sin 18^{o}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} 18^{o}}}\right)-\frac{\pi}{10}+\sin ^{-1}\left(\frac{h \sin 18^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)\right] \\
& \omega_{\text {reg.penta. }}=2\left[\frac{3 \pi}{10}+\sin ^{-1}\left(\frac{h \sin 18^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)-\sin ^{-1}\left(\frac{h \cos 36^{o}}{\sqrt{h^{2}+a^{2} \cos ^{2} 18^{o}}}\right)-\sin ^{-1}\left(\frac{2 h \sin 18^{o}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} 18^{o}}}\right)\right]
\end{aligned}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a regular pentagonal plane, having each side of length a, at any point lying at a normal height h from any of the vertices.

- Regular Hexagonal Plane

By following the same procedure as in case of a regular pentagon, we can divide the hexagon into sub-elementary right triangles.
(As shown in the figure 18)
By using Element Method, solid angle subtended by given regular hexagonal plane ABCDEF at the given point P lying at a normal height h from vertex ' A ' (i.e. foot of perpendicular)

$$
\Rightarrow \omega_{\text {reg.hexa. }}=2\left(\omega_{\triangle A N C}+\omega_{\triangle A C D}-\omega_{\triangle A N B}\right)
$$

Necessary dimensions can be calculated by the figure as follows

Fig 18: Point P lying on the normal axis passing through the vertex A of regular hexagon

$$
A N=a \cos 30^{\circ}=\frac{a \sqrt{3}}{2}, \quad B N=a \sin 30^{\circ}=\frac{a}{2}, \quad C N=a+\frac{a}{2}=\frac{3 a}{2} \quad \& A C=\frac{3 a}{2 \sin 60^{\circ}}=a \sqrt{3}
$$

Now, using standard formula-1, solid angle subtended by the right $\triangle A N C$ at the point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle A N C} & =\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{\frac{3 a}{2}}{\sqrt{\left(\frac{3 a}{2}\right)^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{3 a}{2}}{\left.\sqrt{\left(\frac{3 a}{2}\right)^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}\right)}\left(\frac{h}{\left.\sqrt{h^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}\right)}\right)\right\}\right. \\
& =\sin ^{-1}\left\{\frac{\sqrt{3}}{2}\right\}-\sin ^{-1}\left\{\left(\frac{\sqrt{3}}{2}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+3 a^{2}}}\right)\right\}=\frac{\pi}{3}-\sin ^{-1}\left(\frac{h \sqrt{3}}{\left.\sqrt{4 h^{2}+3 a^{2}}\right)}\right.
\end{aligned}
$$

Similarly, we get solid angle subtended by right $\triangle A N B$ at the given point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle A N B} & =\sin ^{-1}\left\{\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{a \sqrt{3}}{2}\right)^{2}}}\right)\right\}
\end{aligned}
$$

$$
=\sin ^{-1}\left\{\frac{1}{2}\right\}-\sin ^{-1}\left\{\left(\frac{1}{2}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+3 a^{2}}}\right)\right\}=\frac{\pi}{6}-\sin ^{-1}\left(\frac{h}{\sqrt{4 h^{2}+3 a^{2}}}\right)
$$

Similarly, we get solid angle subtended by right $\triangle A C D$ at the given point $P(0,0, h)$

$$
\begin{aligned}
\omega_{\triangle A C D} & =\sin ^{-1}\left\{\frac{C D}{\sqrt{(C D)^{2}+(A C)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C D}{\sqrt{(C D)^{2}+(A C)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A C)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{a}{\sqrt{a^{2}+(a \sqrt{3})^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{a}{\sqrt{h^{2}+(a \sqrt{3})^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+(a \sqrt{3})^{2}}}\right)\right\} \\
\omega_{\Delta A C D} & =\sin ^{-1}\left\{\frac{1}{2}\right\}-\sin ^{-1}\left\{\left(\frac{1}{2}\right)\left(\frac{h}{\sqrt{h^{2}+3 a^{2}}}\right)\right\}=\frac{\pi}{6}-\sin ^{-1}\left(\frac{h}{2 \sqrt{h^{2}+3 a^{2}}}\right)
\end{aligned}
$$

Hence on setting the corresponding values, solid angle subtended by the regular hexagonal plane ABCDEF at the given point P is given as

$$
\begin{aligned}
\omega_{\text {reg.hexa. }} & =2\left[\omega_{\Delta A N C}+\omega_{\Delta A C D}-\omega_{\Delta A N B}\right] \\
& =2\left[\frac{\pi}{3}-\sin ^{-1}\left(\frac{h \sqrt{3}}{\sqrt{4 h^{2}+3 a^{2}}}\right)+\frac{\pi}{6}-\sin ^{-1}\left(\frac{h}{2 \sqrt{h^{2}+3 a^{2}}}\right)-\frac{\pi}{6}+\sin ^{-1}\left(\frac{h}{\sqrt{4 h^{2}+3 a^{2}}}\right)\right] \\
\boldsymbol{\omega}_{\text {reg.hexa. }} & =2\left[\frac{\pi}{3}+\sin ^{-1}\left(\frac{h}{\sqrt{4 \boldsymbol{h}^{2}+3 \boldsymbol{a}^{2}}}\right)-\sin ^{-1}\left(\frac{h \sqrt{3}}{\sqrt{4 \boldsymbol{h}^{2}+3 \boldsymbol{a}^{2}}}\right)-\sin ^{-1}\left(\frac{h}{2 \sqrt{\boldsymbol{h}^{2}+3 \boldsymbol{a}^{2}}}\right)\right]
\end{aligned}
$$

Note: This is the standard formula to find out the value of solid angle subtended by a regular hexagonal plane, having each side of length a, at any point lying at a normal height h from any of the vertices.

Thus, all above standard results are obtained by analytical method of HCR's Theory using single standard formula-1 of right triangular plane only. It is obvious that this theory can be applied to find out the solid angle subtended by any polygonal plane (i.e. plane bounded by the straight lines only) provided the location of foot of perpendicular (F.O.P.) is known.

Now, we are interested to calculate solid angle subtended by different polygonal planes at different points in the space by tracing the diagram, specifying the F.O.P. \& measuring the necessary dimensions \& calculating.

X. Graphical Applications of Theory of Polygon

Graphical Method:

This method is similar to the analytical method which is applicable for some particular configurations of polygon \& locations of given point in the space. But graphical method is applicable for any configuration of polygonal plane \& location of the point in the space. This is the method of tracing, measurements \& mathematical calculations which requires the following parameters to be already known

1. Geometrical shape \& dimensions of the polygonal plane

2. Normal distance (h) of the given point from the plane of polygon
3. Location of foot of perpendicular (F.O.P.) drawn from given point to the plane of polygon

First let's know the working steps of the graphical method as follows

Step 1: Trace the diagram of the given polygon with the help of known sides \& angles.
Step 2: Draw a perpendicular to the plane of polygon \& specify the location of F.O.P.

Step 3: Divide the polygon into elementary triangles then each elementary triangle into two sub-elementary right triangles all having common vertex at the F.O.P.

Step 4: Find the area of the polygon as the algebraic sum of areas of sub-elementary right triangles i.e. area of each of the right triangles must be taken with proper sign (positive or negative depending on the area is inside or outside the boundary of polygon)

Step 5: Replace each area of sub-elementary right triangle by the solid angle subtended by that right triangle at the given point in the space.

Step 6: Measure the necessary dimensions (i.e. distances) \& set them into standard formula-1 to calculate the solid angle subtended by each of the sub-elementary right triangles.

Step 7: Thus, find out the value of solid angle subtended by given polygonal plane at the given point by taking the algebraic sum of solid angles subtended by the sub-elementary right triangles at the same point in the space.

We are interested to directly apply the above steps without mentioning them in the following numerical examples

Numerical Examples:

Example 1: Let's find out the value of solid angle subtended by a triangular ABC having sides $A B=$ $8.6 \mathrm{~cm}, B C=4 \mathrm{~cm} \& A C=5.5 \mathrm{~cm}$ at a point P lying at a normal height 3 cm from the vertex ' A '.

Sol. Draw the triangle ABC with known values of the sides \& specify the location of given point P by $P(0,0,3)$ perpendicularly outwards to the plane of paper \& F.O.P. (i.e. vertex ' A ') (as shown in the figure 19 below)

Divide $\triangle A B C$ into two right triangles $\triangle A N B \& \triangle A C N$ by drawing a perpendicular $A N$ to the opposite side BC (extended line). All must have common vertex at F.O.P.

It is clear from the diagram, the solid angle subtended by $\triangle A B C$ at the point ' P ' is given by Element Method as follows
$\omega_{\triangle A B C}=\omega_{\triangle A N B}-\omega_{\triangle A N C}$

Now, measure the necessary dimensions \& perform the following calculations, by using standard formula-1
$A N=4.4 \mathrm{~cm}, C N=3.6 \mathrm{~cm} \quad($ from the diagram $)$
$B N=B C+C N=4+3.6=7.6 \mathrm{~cm}$
Now, solid angle subtended by right $\triangle A N B$ at the given point ' P '
On setting the corresponding values in formula of right triangle

Fig 19: Point P is lying perpendicularly outwards to the plane of paper. All the dimensions are in cm .

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle A N B} & =\sin ^{-1}\left\{\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B N}{\sqrt{(B N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{7.6}{\sqrt{7.6^{2}+4.4^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{7.6}{\sqrt{7.6^{2}+4.4^{2}}}\right)\left(\frac{3}{\sqrt{3^{2}+4.4^{2}}}\right)\right\} \\
& =1.046000555-0.509254517=\mathbf{0 . 5 3 6 7 4 6 0 3 8} \mathrm{sr}
\end{aligned}
$$

Similarly, solid angle subtended by right $\triangle A N C$ at the given point ' P '

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle A N C} & =\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{3.6}{\sqrt{3.6^{2}+4.4^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{3.6}{\sqrt{3.6^{2}+4.4^{2}}}\right)\left(\frac{3}{\sqrt{3^{2}+4.4^{2}}}\right)\right\} \\
& =0.68572951-0.364761147=\mathbf{0 . 3 2 0 9 6 8 3 6 3} \mathbf{s r}
\end{aligned}
$$

Hence, solid angle subtended by $\triangle A B C$ at the point ' P ' (by Element Method)

$$
\Rightarrow \quad \omega_{\triangle A B C}=\omega_{\triangle A N B}-\omega_{\triangle A N C}=0.536746038-0.320968363=\mathbf{0 . 2 1 5 7 7 7 6 7 5} \mathbf{s r}
$$

Example 2: Let's find out solid angle subtended by a quadrilateral $A B C D$ having sides $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$, $C D=7 \mathrm{~cm}, A D=4 \mathrm{~cm} \& \angle B A D=110^{\circ}$ at a point lying at a normal height 2 cm from the vertex ' A ' \& calculate the total luminous flux intercepted by the plane ABCD if a uniform point-source of 1400 lm is located at the point ' P '

Sol. Draw the quadrilateral ABCD with known values of the sides \& angle \& specify the location of given point P by $P(0,0,2)$ perpendicularly outwards to the plane of paper \& F.O.P. (i.e. vertex ' A ') (as shown in the fig 20)

Divide the quadrilateral ABCD into two triangles $\triangle A B C \& \triangle A D C$ by joining the vertex C to the F.O.P. ' A '. Further divide $\triangle A B C \& \triangle A D C$ into two right triangles $\triangle A M B \& \triangle A M C$ and $\triangle A N C \& \triangle A N D$ respectively simply by drawing perpendicular to the opposite side in $\triangle A B C \& \triangle A D C$ having common vertex at F.O.P.

It is clear from the diagram, the solid angle subtended by quadrilateral $A B C D$ at the point ' P ' is given by Element Method
$\omega_{A B C D}=\omega_{\triangle A B C}+\omega_{\triangle A C D}=\left(\omega_{\triangle A M C}+\omega_{\triangle A M B}\right)+\left(\omega_{\triangle A N C}-\omega_{\triangle A N D}\right)$
Now, measure the necessary dimensions then perform the following calculations

Fig 20: Point P is lying perpendicularly outwards to the plane of paper. All the dimensions are in cm .
$A N=3.8 \mathrm{~cm}, \quad D N=1.2 \mathrm{~cm}$,
$A M=5.9 \mathrm{~cm}, \quad$ (from the diagram)
$B M=1.2 \mathrm{~cm} \Rightarrow C N=C D+D N=7+1.2=8.2 \mathrm{~cm} \&$
$C M=B C-B M=8-1.2=6.8 \mathrm{~cm}$
Now, solid angle subtended by right $\triangle A N C$ at the given point ' P '

On setting the corresponding values in formula of right triangle

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\Delta A N C} & =\sin ^{-1}\left\{\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C N}{\sqrt{(C N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{8.2}{\sqrt{8.2^{2}+3.8^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{8.2}{\sqrt{8.2^{2}+3.8^{2}}}\right)\left(\frac{2}{\sqrt{2^{2}+3.8^{2}}}\right)\right\} \\
& =1.136842957-0.436286431=\mathbf{0 . 7 0 0 5 5 6 5 2 6} \mathbf{s r}
\end{aligned}
$$

Similarly, solid angle subtended by right $\triangle A N D$ at the given point ' P '

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle A N D} & =\sin ^{-1}\left\{\frac{D N}{\sqrt{(D N)^{2}+(A N)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{D N}{\sqrt{(D N)^{2}+(A N)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A N)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1.2}{\sqrt{1.2^{2}+3.8^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{1.2}{\sqrt{1.2^{2}+3.8^{2}}}\right)\left(\frac{2}{\sqrt{2^{2}+3.8^{2}}}\right)\right\} \\
& =0.305878871-0.140714774=\mathbf{0 . 1 6 5 1 6 4 0 9 7} \mathbf{s r}
\end{aligned}
$$

Similarly, solid angle subtended by right $\triangle A M C$ at the given point ' P '

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle A M C} & =\sin ^{-1}\left\{\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C M}{\sqrt{(C M)^{2}+(A M)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A M)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{6.8}{\sqrt{6.8^{2}+5.9^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{6.8}{\sqrt{6.8^{2}+5.9^{2}}}\right)\left(\frac{2}{\sqrt{2^{2}+5.9^{2}}}\right)\right\} \\
& =0.856146031-0.24492976=\mathbf{0 . 6 1 1 2 1 6 2 7 1} \mathbf{s r}
\end{aligned}
$$

Similarly, solid angle subtended by right $\triangle A M B$ at the given point ' P '

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle A M B} & =\sin ^{-1}\left\{\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B M}{\sqrt{(B M)^{2}+(A M)^{2}}}\right)\left(\frac{P A}{\sqrt{(P A)^{2}+(A M)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1.2}{\sqrt{1.2^{2}+5.9^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{1.2}{\sqrt{1.2^{2}+5.9^{2}}}\right)\left(\frac{2}{\sqrt{2^{2}+5.9^{2}}}\right)\right\} \\
& =0.200652877-0.064029809=\mathbf{0 . 1 3 6 6 2 3 0 6 8} \mathbf{~ s r}
\end{aligned}
$$

Hence, solid angle subtended by quadrilateral $A B C D$ at the point ' P ' (by Element Method)

$$
\begin{aligned}
& \Rightarrow \omega_{A B C D}=\omega_{\triangle A B C}+\omega_{\triangle A C D}=\left(\omega_{\triangle A M C}+\omega_{\triangle A M B}\right)+\left(\omega_{\triangle A N C}-\omega_{\triangle A N D}\right) \\
& \therefore \quad \boldsymbol{\omega}_{\boldsymbol{A B C D}}=0.611216271+0.136623068+0.700556526-0.165164097=\mathbf{1} .283231768 \mathbf{~ s r}
\end{aligned}
$$

Calculation of Luminous Flux: If a uniform point-source of 1400 Im is located at the given point ' P ' then the total luminous flux intercepted by the quadrilateral plane ABCD

$$
=\frac{\text { solid angle } \times \text { total flux emitted by source }}{4 \pi}=\frac{1.283231768 \times 1400}{4 \pi}=\mathbf{1 4 2 . 9 6 2 8 7 5 3} \mathbf{l m}(\text { Lumen })
$$

It means that only $\mathbf{1 4 2 . 9 6 2 8 7 5 3 ~ I m}$ out of $\mathbf{1 4 0 0}$ Im flux is striking the quadrilateral plane ABCD \& rest of the flux is escaping to the surrounding space. This result can be experimentally verified. (H.C. Rajpoot)

Example 3: Let's find out solid angle subtended by a pentagonal plane $A B C D E$ having sides $A B=6 \mathrm{~cm}, B C=$ $5.7 \mathrm{~cm}, C D=6.65 \mathrm{~cm}, D E=5.5 \mathrm{~cm}, A E=7.8 \mathrm{~cm}, \angle B A E=120^{\circ} \& \angle A B C=80^{\circ}$ at a point ' P ' lying at a normal height 6 cm from a point ' O ' internally dividing the side $A B$ such that $O A$: $O B=2: 1 \&$ calculate the total luminous flux intercepted by the plane ABCDE if a uniform point-source of 1400 Im is located at the point ' P '

Sol: Draw the pentagon $A B C D E$ with known values of the sides \& angles \& specify the location of given point P by $P(0,0,6)$ perpendicularly outwards to the plane of paper \& F.O.P. 'O' (as shown in the figure 21)

Divide the pentagon $A B C D E$ into elementary triangles $\triangle O B C, \triangle O C D, \triangle O D E \& \triangle O E A$ by joining all the vertices of pentagon $A B C D E$ to the F.O.P. ' O '. Further divide each of the triangles $\triangle O B C, \triangle O C D, \triangle O D E \& \triangle O E A$ in two right triangles simply by drawing a perpendicular to the opposite side in the respective triangle. (See the diagram)

It is clear from the diagram, the solid angle subtended by pentagonal plane ABCDE at the point ' P ' is given by Element Method as follows

Fig 21: Point P is lying perpendicularly outwards to the plane of paper. All the dimensions are in cm .
$\omega_{A B C D E}=\omega_{\triangle O B C}+\omega_{\triangle O C D}+\omega_{\triangle O D E}+\omega_{\triangle O E A} \ldots \ldots \ldots(I)$
From the diagram, it 's obvious that the solid angle $\omega_{A B C D E}$ subtended by the pentagon ABCDE is expressed as the algebraic sum of solid angles of sub-elementary right triangles only as follows

$$
\begin{array}{ll}
\omega_{\triangle O B C}=\omega_{\Delta O F B}+\omega_{\Delta O F C} & \omega_{\Delta O C D}=\omega_{\Delta O G D}-\omega_{\Delta O G C} \\
\omega_{\triangle O D E}=\omega_{\Delta O H D}+\omega_{\Delta O H E} & \omega_{\Delta O E A}=\omega_{\Delta O J E}-\omega_{\Delta O J A}
\end{array}
$$

Now, setting the values in eq(I), we get

$$
\begin{equation*}
\omega_{A B C D E}=\left(\omega_{\triangle O F B}+\omega_{\triangle O F C}\right)+\left(\omega_{\triangle O G D}-\omega_{\triangle O G C}\right)+\left(\omega_{\triangle O H D}+\omega_{\triangle O H E}\right)+\left(\omega_{\triangle O J E}-\omega_{\triangle O J A}\right) \tag{II}
\end{equation*}
$$

Now, measure the necessary dimensions \& set them into standard formula-1 to find out above values of solid angle subtended by the sub-elementary right triangles at the given point ' P ' as follows

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle O F B} & =\sin ^{-1}\left\{\frac{F B}{\sqrt{(F B)^{2}+(O F)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{F B}{\sqrt{(F B)^{2}+(O F)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O F)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{0.35}{\sqrt{(0.35)^{2}+(1.95)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{0.35}{\sqrt{(0.35)^{2}+(1.95)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(1.95)^{2}}}\right)\right\} \\
& =0.177596167-0.168814218=\mathbf{0 . 0 0 8 7 8 1 9 4 9} \boldsymbol{s r} \\
\Rightarrow \boldsymbol{\omega}_{\triangle O F C} & =\sin ^{-1}\left\{\frac{F C}{\sqrt{(F C)^{2}+(O F)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{F C}{\sqrt{(F C)^{2}+(O F)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O F)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{5.35}{\sqrt{(5.35)^{2}+(1.95)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{5.35}{\sqrt{(5.35)^{2}+(1.95)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(1.95)^{2}}}\right)\right\} \\
& =1.221275136-1.105149872=\mathbf{0 . 1 1 6 1 2 5 2 6 4 \boldsymbol { s r }}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \boldsymbol{\omega}_{\triangle O G D}=\sin ^{-1}\left\{\frac{D G}{\sqrt{(D G)^{2}+(O G)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{D G}{\sqrt{(D G)^{2}+(O G)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O G)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{9.9}{\sqrt{(9.9)^{2}+(4.6)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{9.9}{\sqrt{(9.9)^{2}+(4.6)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(4.6)^{2}}}\right)\right\} \\
& =1.135829376-0.803382922=\mathbf{0 . 3 3 2 4 4 6 4 5 4} \boldsymbol{s} \boldsymbol{r} \\
& \Rightarrow \boldsymbol{\omega}_{\Delta O G C}=\sin ^{-1}\left\{\frac{C G}{\sqrt{(C G)^{2}+(O G)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C G}{\sqrt{(C G)^{2}+(O G)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O G)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{3.25}{\sqrt{(3.25)^{2}+(4.6)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{3.25}{\sqrt{(3.25)^{2}+(4.6)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(4.6)^{2}}}\right)\right\} \\
& =0.615089573-0.475672072=\mathbf{0} .139417501 \boldsymbol{s r} \\
& \Rightarrow \boldsymbol{\omega}_{\Delta \boldsymbol{O H D}}=\sin ^{-1}\left\{\frac{D H}{\sqrt{(D H)^{2}+(O H)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{D H}{\sqrt{(D H)^{2}+(O H)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O H)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{3.7}{\sqrt{(3.7)^{2}+(10.25)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{3.7}{\sqrt{(3.7)^{2}+(10.25)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(10.25)^{2}}}\right)\right\} \\
& =0.346418989-0.172376751=\mathbf{0 . 1 7 4 0 4 2 2 3 8} \boldsymbol{s r} \\
& \Rightarrow \boldsymbol{\omega}_{\triangle O H E}=\sin ^{-1}\left\{\frac{E H}{\sqrt{(E H)^{2}+(O H)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{E H}{\sqrt{(E H)^{2}+(O H)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O H)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1.8}{\sqrt{(1.8)^{2}+(10.25)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{1.8}{\sqrt{(1.8)^{2}+(10.25)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(10.25)^{2}}}\right)\right\} \\
& =0.173837242-0.087488889=\mathbf{0 . 0 8 6 3 4 8 3 5 3} \boldsymbol{s r} \\
& \Rightarrow \boldsymbol{\omega}_{\Delta O J E}=\sin ^{-1}\left\{\frac{E J}{\sqrt{(E J)^{2}+(O J)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{E J}{\sqrt{(E J)^{2}+(O J)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O J)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{9.8}{\sqrt{(9.8)^{2}+(3.45)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{9.8}{\sqrt{(9.8)^{2}+(3.45)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(3.45)^{2}}}\right)\right\} \\
& =1.232304566-0.957430258=\mathbf{0 . 2 7 4 8 7 4 3 0 8} \boldsymbol{s r} \\
& \Rightarrow \boldsymbol{\omega}_{\Delta \boldsymbol{O} \boldsymbol{J} A}=\sin ^{-1}\left\{\frac{A J}{\sqrt{(A J)^{2}+(O J)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A J}{\sqrt{(A J)^{2}+(O J)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O J)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{2}{\sqrt{(2)^{2}+(3.45)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{2}{\sqrt{(2)^{2}+(3.45)^{2}}}\right)\left(\frac{6}{\sqrt{(6)^{2}+(3.45)^{2}}}\right)\right\} \\
& =0.525366873-0.449793847=\mathbf{0 . 0 7 5 5 7 3 0 2 6} \boldsymbol{s r}
\end{aligned}
$$

Hence, by setting the corresponding values in eq(II), solid angle subtended by the pentagonal plane at the given point ' P ' is calculated as follows

$$
\boldsymbol{\omega}_{A B C D E}=\left(\omega_{\triangle O F B}+\omega_{\triangle O F C}\right)+\left(\omega_{\triangle O G D}-\omega_{\triangle O G C}\right)+\left(\omega_{\triangle O H D}+\omega_{\triangle O H E}\right)+\left(\omega_{\triangle O J E}-\omega_{\triangle O J A}\right)
$$

$$
\begin{aligned}
=(0.008781949 & +0.116125264)+(0.332446454-0.139417501)+(0.174042238+0.086348353) \\
& +(0.274874308-0.075573026)=\mathbf{0 . 7 7 7 6 2 8 0 3 9} \boldsymbol{s r}
\end{aligned}
$$

Calculation of Luminous Flux: If a uniform point-source of 1400 Im is located at the given point ' P ' then the total luminous flux intercepted by the pentagonal plane ABCDE

$$
=\frac{\text { solid angle } \times \text { total flux emitted by source }}{4 \pi}=\frac{0.777628039 \times 1400}{4 \pi}=\mathbf{8 6 . 6 3 4 3 4 2 4 1} \mathbf{~ l m}(\text { Lumen })
$$

It means that only $\mathbf{8 6 . 6 3 4 3 4 2 4 1} \mathbf{~ I m}$ out of 1400 Im flux is striking the pentagonal plane ABCDE \& rest of the flux is escaping to the surrounding space. This result can be experimentally verified. (H.C. Rajpoot)

Example 4: Let's find out solid angle subtended by a quadrilateral plane $A B C D$ having sides $A B=8 \mathrm{~cm}, B C=$ $9 \mathrm{~cm}, C D=6 \mathrm{~cm}, A D=4 \mathrm{~cm} \& \angle B A D=70^{\circ}$ at a point ' P ' lying at a normal height 4 cm from a point ' O^{\prime} outside the quadrilateral ABCD such that $O B=8 \mathrm{~cm} \& O C=4.2 \mathrm{~cm}$ \& calculate the total luminous flux intercepted by the plane ABCD if a uniform point-source of 1400 lm is located at the point ' P '

Sol: Draw the quadrilateral ABCD with known values of the sides \& angle \& specify the location of given point P by $P(0,0,4)$ perpendicularly outwards to the plane of paper \& F.O.P. 'O' (See the figure 22)

Divide quadrilateral $A B C D$ into elementary triangles $\triangle O A B, \triangle O D A \& \triangle O C D$ by joining all the vertices of quadrilateral $A B C D$ to the F.O.P. 'O'. Further divide each of the triangles $\triangle O A B, \triangle O D A \& \triangle O C D$ in two right triangles simply by drawing perpendiculars $O E$, $O G \& O F$ to the opposite sides $A B, A D \& C D$ in the respective triangles. (See the diagram)

It is clear from the diagram, the solid angle subtended by quadrilateral plane ABCD at the given point ' P ' is given by Element Method as follows

Area of quadrilateral $A B C D=$

algebraic sum of areas of elementary triangles

Fig 22: Point P is lying perpendicularly outwards to the plane of paper. All the dimensions are in cm .

$$
\therefore A_{A B C D}=\left(A_{\triangle O A B}-A_{\triangle O K B}\right)+\left(A_{\triangle O D A}-A_{\triangle O J K}\right)+\left(A_{\triangle O C D}-A_{\triangle O C J}\right)
$$

Now, replacing areas by corresponding values of solid angle, we get

$$
\begin{equation*}
\omega_{A B C D}=\left(\omega_{\triangle O A B}-\omega_{\triangle O K B}\right)+\left(\omega_{\triangle O D A}-\omega_{\triangle O J K}\right)+\left(\omega_{\triangle O C D}-\omega_{\triangle O C J}\right) \tag{I}
\end{equation*}
$$

Now, draw a perpendicular OH from F.O.P. to the side BC to divide $\triangle O K B, \triangle O J K \& \triangle O C J$ into right triangles \& express the above values of solid angle as the algebraic sum of solid angles subtended by the right triangles only as follows

$$
\begin{array}{lll}
\omega_{\triangle O A B}=\omega_{\triangle O E A}-\omega_{\triangle O E B} & \omega_{\triangle O D A}=\omega_{\triangle O G A}-\omega_{\triangle O G D} & \omega_{\triangle O C D}=\omega_{\triangle O F D}-\omega_{\triangle O F C} \\
\omega_{\triangle O K B}=\omega_{\triangle O H B}-\omega_{\triangle O H K} & \omega_{\triangle O J K}=\omega_{\triangle O H K}-\omega_{\triangle O H J} & \omega_{\triangle O C J}=\omega_{\triangle O H C}+\omega_{\triangle O H J}
\end{array}
$$

Now, setting the above values in eq(I), we get

$$
\begin{align*}
& \omega_{A B C D}=\left(\omega_{\triangle O E A}-\omega_{\triangle O E B}-\omega_{\triangle O H B}+\omega_{\triangle O H K}\right)+\left(\omega_{\triangle O G A}-\omega_{\triangle O G D}-\omega_{\triangle O H K}+\omega_{\triangle O H J}\right)+\left(\omega_{\triangle O F D}-\omega_{\triangle O F C}-\right. \\
& \left.\omega_{\triangle O H C}-\omega_{\triangle O H J}\right) \\
& \quad \omega_{A B C D}=\omega_{\triangle O E A}+\omega_{\triangle O G A}+\omega_{\triangle O F D}-\omega_{\triangle O E B}-\omega_{\triangle O H B}-\omega_{\triangle O G D}-\omega_{\triangle O F C}-\omega_{\triangle O H C} \quad \ldots \ldots \ldots(I I) \tag{II}
\end{align*}
$$

Now, measure the necessary dimensions \& set them into standard formula-1 to find out above values of solid angle subtended by the sub-elementary right triangles at the given point ' P ' as follows

$$
\begin{aligned}
\Rightarrow \boldsymbol{\omega}_{\triangle O E A} & =\sin ^{-1}\left\{\frac{A E}{\sqrt{(A E)^{2}+(O E)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A E}{\sqrt{(A E)^{2}+(O E)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O E)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{9.4}{\sqrt{(9.4)^{2}+(7.9)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{9.4}{\sqrt{(9.4)^{2}+(7.9)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(7.9)^{2}}}\right)\right\} \\
& =0.871887063-0.353107934=\mathbf{0 . 5 1 8 7 7 9 1 2 9} \boldsymbol{s r} \\
\Rightarrow \boldsymbol{\omega}_{\triangle O G A} & =\sin ^{-1}\left\{\frac{A G}{\sqrt{(A G)^{2}+(O G)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{A G}{\sqrt{(A G)^{2}+(O G)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O G)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{10.5}{\sqrt{(10.5)^{2}+(6)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{10.5}{\sqrt{(10.5)^{2}+(6)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(6)^{2}}}\right)\right\} \\
& =1.051650213-0.502496173=\mathbf{0 . 5 4 9 1 5 4 0 4 \boldsymbol { s r }}
\end{aligned}
$$

$$
\Rightarrow \boldsymbol{\omega}_{\Delta O F D}=\sin ^{-1}\left\{\frac{D F}{\sqrt{(D F)^{2}+(O F)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{D F}{\sqrt{(D F)^{2}+(O F)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O F)^{2}}}\right)\right\}
$$

$$
=\sin ^{-1}\left\{\frac{8.1}{\sqrt{(8.1)^{2}+(3.65)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{8.1}{\sqrt{(8.1)^{2}+(3.65)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(3.65)^{2}}}\right)\right\}
$$

$$
=1.147429185-0.738889475=\mathbf{0 . 4 0 8 5 3 9 7 0 9} \boldsymbol{s r}
$$

$$
\Rightarrow \boldsymbol{\omega}_{\triangle O E B}=\sin ^{-1}\left\{\frac{B E}{\sqrt{(B E)^{2}+(O E)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B E}{\sqrt{(B E)^{2}+(O E)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O E)^{2}}}\right)\right\}
$$

$$
=\sin ^{-1}\left\{\frac{1.4}{\sqrt{(1.4)^{2}+(7.9)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{1.4}{\sqrt{(1.4)^{2}+(7.9)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(7.9)^{2}}}\right)\right\}
$$

$$
=0.17539422-0.078906232=\mathbf{0 . 0 9 6 4 8 7 9 8 8} \boldsymbol{s r}
$$

$$
\Rightarrow \boldsymbol{\omega}_{\Delta O H B}=\sin ^{-1}\left\{\frac{B H}{\sqrt{(B H)^{2}+(O H)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{B H}{\sqrt{(B H)^{2}+(O H)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O H)^{2}}}\right)\right\}
$$

$$
=\sin ^{-1}\left\{\frac{7.1}{\sqrt{(7.1)^{2}+(3.8)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{7.1}{\sqrt{(7.1)^{2}+(3.8)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(3.8)^{2}}}\right)\right\}
$$

$$
=1.079378081-0.69346571=\mathbf{0 . 3 8 5 9 1 2 3 7 1} s r
$$

$$
\Rightarrow \boldsymbol{\omega}_{\triangle O G D}=\sin ^{-1}\left\{\frac{D G}{\sqrt{(D G)^{2}+(O G)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{D G}{\sqrt{(D G)^{2}+(O G)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O G)^{2}}}\right)\right\}
$$

$$
=\sin ^{-1}\left\{\frac{6.5}{\sqrt{(6.5)^{2}+(6)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{6.5}{\sqrt{(6.5)^{2}+(6)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(6)^{2}}}\right)\right\}
$$

$$
\begin{aligned}
& =0.82537685-0.419819479=\mathbf{0 . 4 0 5 5 5 7 3 7 1} \boldsymbol{s r} \\
\Rightarrow \boldsymbol{\omega}_{\triangle O F C} & =\sin ^{-1}\left\{\frac{C F}{\sqrt{(C F)^{2}+(O F)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C F}{\sqrt{(C F)^{2}+(O F)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O F)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{2.1}{\sqrt{(2.1)^{2}+(3.65)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{2.1}{\sqrt{(2.1)^{2}+(3.65)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(3.65)^{2}}}\right)\right\} \\
& =0.522091613-0.37726383=\mathbf{0 . 1 4 4 8 2 7 7 8 3} \boldsymbol{s r} \\
\Rightarrow \boldsymbol{\omega}_{\triangle O H C} & =\sin ^{-1}\left\{\frac{C H}{\sqrt{(C H)^{2}+(O H)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{C H}{\sqrt{(C H)^{2}+(O H)^{2}}}\right)\left(\frac{P O}{\sqrt{(P O)^{2}+(O H)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left\{\frac{1.9}{\sqrt{(1.9)^{2}+(3.8)^{2}}}\right\}-\sin ^{-1}\left\{\left(\frac{1.9}{\sqrt{(1.9)^{2}+(3.8)^{2}}}\right)\left(\frac{4}{\sqrt{(4)^{2}+(3.8)^{2}}}\right)\right\} \\
& =0.463647609-0.330197223=\mathbf{0 . 1 3 3 4 5 0 3 8 6} \boldsymbol{s r}
\end{aligned}
$$

Hence, by setting the corresponding values in eq(II), solid angle subtended by the pentagonal plane at the given point ' P ' is calculated as follows

$$
\begin{aligned}
\boldsymbol{\omega}_{A B C D}= & \omega_{\triangle O E A}+\omega_{\triangle O G A}+\omega_{\triangle O F D}-\omega_{\triangle O E B}-\omega_{\triangle O H B}-\omega_{\triangle O G D}-\omega_{\triangle O F C}-\omega_{\triangle O H C} \\
=0.518779129+ & 0.54915404+0.408539709-0.096487988-0.385912371-0.405557371 \\
& -0.144827783-0.133450386=\mathbf{0 . 3 1 0 2 3 6 9 7 9} \mathbf{~ r}
\end{aligned}
$$

Calculation of Luminous Flux: If a uniform point-source of 1400 lm is located at the given point ' P ' then the total luminous flux intercepted by the quadrilateral plane ABCD

$$
=\frac{\text { solid angle } \times \text { total flux emitted by source }}{4 \pi}=\frac{0.310236979 \times 1400}{4 \pi}=\mathbf{3 4 . 5 6 3 0 2 4 1 2} \mathbf{~ l m}(\boldsymbol{L u m e n})
$$

It means that only $\mathbf{3 4 . 5 6 3 0 2 4 1 2}$ Im out of $\mathbf{1 4 0 0}$ Im flux is striking the quadrilateral plane ABCD \& rest of the flux is escaping to the surrounding space. This result can be experimentally verified.

Thus, all the mathematical results obtained above can be verified by the experimental results. Although, there had not been any unifying principle to be applied on any polygonal plane for any configuration \& location of the point in the space. The symbols \& names used above are arbitrary given by the author Mr H.C. Rajpoot.

XI. Conclusion

It is obvious from results obtained above that this theory is a Unifying Principle which is easy to apply for any configuration of a given polygon \& any location of a point (i.e. observer) in the space by using a simple \& systematic procedure \& a standard formula. Necessary dimensions can be measured by analytical method or by tracing the diagram of polygon $\&$ specifying the location of F.O.P.
Though, it is a little lengthy for random configuration of polygon \& location of observer still it can be applied to find the solid angle subtended by polygon in the easier way as compared to any other methods existing so far in the field of 3-D Geometry. Theory of Polygon can be concluded as follows

Applicability: It is easily applied to find out the solid angle subtended by any polygonal plane (i.e. plane bounded by the straight lines only) at any point (i.e. observer) in 3D space.

Conditions of Application: This theory is applicable for any polygonal plane \& any point in the space if the following parameters are already known

1. Geometrical shape \& dimensions of the polygonal plane
2. Normal distance (h) of the given point from the plane of polygon
3. Location of foot of perpendicular (F.O.P.) drawn from given point to the plane of polygon

While, the necessary dimensions (values) used in master formula-1 (as derived above) are calculated either by analytical method or by graphical method i.e. by tracing the diagram \& measuring the dimensions depending on which is easier. Analytical method is limited for some particular location of the point while Graphical method is applicable for all the locations \& configuration of polygon w.r.t. the observer in the space. This method can never fail but a little complexity may be there in case of random locations \& polygon with higher number of sides.

Steps to be followed:

1. Trace the diagram of the given polygon with the help of known sides \& angles.
2. Draw a perpendicular to the plane of polygon \& specify the location of F.O.P.
3. Divide the polygon into right triangles having common vertex at the F.O.P. \& find the solid angle subtended by the polygon as the algebraic sum of solid angles subtended by right triangles such that algebraic sum of areas of right triangles is equal to the area of polygon.
4. Measure the necessary dimensions \& set them into standard formula-1 to calculate solid angle subtended by each of the right triangles $\&$ hence solid angle subtended by the polygon at the given point.

Ultimate aim is to find out solid angle, subtended by a polygon at a given point, as the algebraic sum of solid angles subtended by the right triangles, measuring the dimensions, applying Master/standard formula-1 on each of the right triangle \& calculating the required result.

Future Scope: This theory can be easily applied for finding out the solid angle subtended by 3-D objects which have surface bounded by the planes only Ex. Cube, Cuboid, Prism, Pyramid, Tetrahedron etc. in 3-D modelling \& analysis by tracing the profile of surface of the solid as a polygon in 2-D \& specifying the location of a given point \& F.O.P. in the plane of profile-polygon as the projection of such solids in 2-D is always a polygon for any configuration of surface of solid in 3D space.

Note: This Theory had been proposed by the author Mr Harish Chandra Rajpoot (B Tech, ME)
M.M.M. University of Technology Gorakhpur-273010 (UP) India

9 Oct, 2014

