"Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by HCR)"

Mathematical Analysis of Spherical Triangle
 Application of HCR's Inverse Cosine Formula \& Theory of Polygon

Mr Harish Chandra Rajpoot
Jan, 2015
M.M.M. University of Technology, Gorakhpur-273010 (UP), India

1. Introduction: We very well know that a spherical triangle is a triangle having all its three vertices at the spherical surface \& each of its sides as a great circle arc. It mainly differs from a plane triangle by having the sum of all its interior angles greater than 180° (property of a spherical triangle). (See figure 1 below)
2. Analysis of spherical triangle (when all of its sides are known): Consider any spherical $\triangle A B C$ having all its sides (each as a great circle arc) of lengths $a, b \& c(\forall a \leq b \leq c)$ on a spherical surface with a radius R such that its interior angles are $A, B \& C \quad(\forall A+B+C>\pi)$ (as shown in the figure 1)

Interior angles $\boldsymbol{A}, \boldsymbol{B} \& \boldsymbol{C}$ of spherical triangle: We know that each interior angle of a spherical triangle is the angle between the planes of great circle arcs representing any two of its consecutive sides. Now, join the vertices $A, B \& C$ by straight lines to obtain a corresponding plane $\triangle A B C$ (as shown by the dotted lines $A B, B C \& C A)$. Similarly, we can extend the straight lines $O A, O B \& O C$ to obtain a plane $\Delta A^{\prime} B^{\prime} C^{\prime}$ which is the base of tetrahedron $O A^{\prime} B^{\prime} C^{\prime}$.

Now, consider the tetrahedron $\mathbf{O A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ having angles $\alpha, \beta \& \gamma$ between its consecutive lateral edges $\mathrm{OB}^{\prime} \& \mathrm{OC}^{\prime}$, $O A^{\prime} \& O C^{\prime}$ and $O A^{\prime} \& O B^{\prime}$ respectively. Now the angles $\alpha, \beta \& \gamma$ are the angles subtended by the sides (each as a great circle arc) of spherical triangle at the centre of sphere which are determined as follows

$$
\alpha=\frac{\text { arc length }}{\text { radius }}=\frac{a}{R}, \beta=\frac{b}{R} \& \gamma=\frac{c}{R}
$$

Now the interior angles $A, B \& C$ of spherical triangle that are also the angles between consecutive lateral triangular faces of the tetrahedron $O A^{\prime} B^{\prime} C^{\prime}$ meeting at the vertex O (i.e. the centre of sphere), are determined/calculated by using HCR's Inverse Cosine Formula according to which if $\alpha, \beta \& \gamma$ are the angles between consecutive lateral edges meeting at any of four vertices of a tetrahedron then the angle (opposite to α) between two lateral faces is given as follows

$$
\theta=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right)
$$

Figure 1: A spherical triangle ABC having its sides (each as a great circle arc) of lengths $\boldsymbol{a}, \boldsymbol{b}$ \& \boldsymbol{c} \& its interior angles $A, B \& C$. A plane $\triangle A B C$ corresponding to the spherical triangle $A B C$ is obtained by joining the vertices $A, B \& C$ by the straight lines.

$$
\therefore \quad A=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right)=\cos ^{-1}\left(\frac{\cos \frac{a}{R}-\cos \frac{b}{R} \cos \frac{c}{R}}{\sin \frac{b}{R} \sin \frac{c}{R}}\right)
$$

"Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by HCR)"

$$
\begin{array}{r}
\operatorname{similarly}, \quad \boldsymbol{B}=\cos ^{-1}\left(\frac{\cos \beta-\cos \alpha \cos \gamma}{\sin \alpha \sin \gamma}\right)=\cos ^{-1}\left(\frac{\cos \frac{b}{R}-\cos \frac{a}{R} \cos \frac{c}{R}}{\sin \frac{a}{R} \sin \frac{c}{R}}\right) \\
\boldsymbol{C}=\cos ^{-1}\left(\frac{\cos \gamma-\cos \alpha \cos \beta}{\sin \alpha \sin \beta}\right)=\cos ^{-1}\left(\frac{\cos \frac{c}{R}-\cos \frac{a}{R} \cos \frac{b}{R}}{\sin \frac{a}{R} \sin \frac{b}{R}}\right)
\end{array}
$$

Area of spherical triangle: In order to calculate area covered by spherical triangle ABC, let's first calculate the solid angle subtended by it at the centre of sphere. But if we join the vertices $A, B \& C$ of the spherical triangle by straight lines then we obtain a corresponding plane $\triangle \boldsymbol{A B C}$ which exerts a solid angle equal to that subtended by the spherical triangle at the centre of sphere. Thus we would calculate the solid angle subtended by the corresponding plane $\triangle A B C$ at the centre of sphere by two methods 1) Analytic \& 2) Graphical as given below.

1. Analytic method for calculation of solid angle:

Sides of corresponding plane $\triangle A B C$: Let the sides of corresponding plane $\triangle A B C$ be $\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime} \& \boldsymbol{c}^{\prime}$ opposite to its angles $\boldsymbol{A}^{\prime}, B^{\prime} \& \boldsymbol{C}^{\prime}\left(\forall \boldsymbol{A}^{\prime}+B^{\prime}+\boldsymbol{C}^{\prime}=\pi\right)$

In isosceles $\triangle O B C$

$$
\begin{gathered}
\Rightarrow \sin \frac{\angle B O C}{2}=\frac{\left(\frac{B C}{2}\right)}{O B} \Rightarrow \sin \frac{\alpha}{2}=\frac{\left(\frac{a^{\prime}}{2}\right)}{R} \Rightarrow a^{\prime}=2 R \sin \frac{\alpha}{2}=2 R \sin \frac{a}{2 R} \quad\left(\operatorname{since}, \alpha=\frac{a}{R}\right) \\
\boldsymbol{a}^{\prime}=2 R \sin \frac{a}{2 R} \\
\text { similarly, } \boldsymbol{b}^{\prime}=2 R \sin \frac{b}{2 R} \& \boldsymbol{c}^{\prime}=2 R \sin \frac{\boldsymbol{c}}{2 \boldsymbol{R}}
\end{gathered}
$$

Now from HCR's Axiom-2, we know that the perpendicular drawn from the centre of the sphere always passes through circumscribed centre of the plane triangle (in this case plane $\triangle A B C$) obtained by joining the vertices of a spherical triangle to the centre of sphere (See the figure 2)

Hence, the circumscribed radius (R^{\prime}) of plane $\triangle A B C$ having its sides $a^{\prime}, b^{\prime} \& c^{\prime}$ (all known) is given as follows

$$
R^{\prime}=\frac{a^{\prime} b^{\prime} c^{\prime}}{4 \Delta}
$$

Where,
Area of plane $\triangle A B C, \Delta=\sqrt{s\left(s-a^{\prime}\right)\left(s-b^{\prime}\right)\left(s-c^{\prime}\right)}$

$$
s=\frac{a^{\prime}+b^{\prime}+c^{\prime}}{2}
$$

Hence, the normal height (\boldsymbol{h}) of plane $\triangle A B C$ from the centre \mathbf{O} of the sphere is given as follows

In right $\triangle O O^{\prime} A$
$O O^{\prime}=\sqrt{(O A)^{2}-\left(A O^{\prime}\right)^{2}}$

Figure 2: The perpendicular 00^{\prime} drawn from the centre O of the sphere to the plane $\triangle A B C$ always passes through its circumscribed centre O^{\prime} according to HCR Axiom-2

"Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by HCR)"

$$
\therefore h=\sqrt{R^{2}-R^{\prime 2}}
$$

Now, in right $\Delta \boldsymbol{O}^{\prime} \boldsymbol{M B}$

$$
\boldsymbol{O}^{\prime} \boldsymbol{M}=\sqrt{\left(B O^{\prime}\right)^{2}-(M B)^{2}}=\sqrt{R^{\prime 2}-\left(\frac{a^{\prime}}{2}\right)^{2}}=\frac{\sqrt{4 \boldsymbol{R}^{\prime 2}-\boldsymbol{a}^{\prime 2}}}{2} \quad\left(\text { since }, \quad C M=M B=\frac{a^{\prime}}{2}\right)
$$

Now, from HCR's Theory of Polygon, the solid angle subtended by the right triangle having its orthogonal sides $\boldsymbol{a} \& \boldsymbol{b}$ at any point lying at a height \boldsymbol{h} on the vertical axis passing through the vertex common to the side $\boldsymbol{a} \&$ the hypotenuse is given from standard formula as

$$
\omega=\sin ^{-1}\left(\frac{b}{\sqrt{b^{2}+a^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+a^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+a^{2}}}\right)\right\}
$$

Hence, the solid angle $\left(\omega_{\Delta O^{\prime} B C}\right)$ subtended by the isosceles $\Delta O^{\prime} B C$ at the centre O of the sphere

$$
=\omega_{\triangle O^{\prime} M B}+\omega_{\triangle O^{\prime} M C}=2\left(\omega_{\triangle O^{\prime} M B}\right)=2\left(\text { solid angle subtended by the right } \Delta O^{\prime} M B\right)
$$

Hence, by setting the corresponding values in the above formula, we get

$$
\begin{aligned}
& \omega_{\triangle O^{\prime} B C}=2\left[\sin ^{-1}\left(\frac{\frac{a^{\prime}}{2}}{\sqrt{\left(\frac{a^{\prime}}{2}\right)^{2}+\left(\frac{\sqrt{4 R^{\prime 2}-a^{\prime 2}}}{2}\right)^{2}}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 \sqrt{\frac{a^{\prime 2}}{4}+R^{\prime 2}-\frac{a^{\prime 2}}{4}}}\right)-\sin ^{-1}\left\{\left(\frac{a^{\prime}}{2 \sqrt{\frac{a^{\prime 2}}{4}+R^{\prime 2}-\frac{a^{\prime 2}}{4}}}\right)\left(\frac{\sqrt{R^{2}-R^{\prime 2}}}{\sqrt{R^{2}-\frac{1}{4} a^{\prime 2}}}\right)\right\}\right] \\
& =2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left\{\left(\frac{a^{\prime}}{2 R^{\prime}}\right)\left(\frac{\sqrt{R^{2}-R^{\prime 2}}}{\sqrt{R^{2}-\frac{1}{4}\left(2 R \sin \frac{a}{2 R}\right)^{2}}}\right)\right\}\right] \\
& =2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left\{\left(\frac{a^{\prime}}{2 R^{\prime}}\right)\left(\frac{\sqrt{R^{2}-R^{\prime 2}}}{R \cos \frac{a}{2 R}}\right)\right\}\right] \\
& =2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{a^{\prime}}{2 R^{\prime}}\right) \sec \frac{a}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right] \\
& \omega_{\triangle O^{\prime} B C}=2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{a^{\prime}}{2 R^{\prime}}\right) \sec \frac{a}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right]=\omega_{1}(\text { let })
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \omega_{\triangle O^{\prime} A C}=2\left[\sin ^{-1}\left(\frac{b^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{b^{\prime}}{2 R^{\prime}}\right) \sec \frac{b}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right]=\omega_{2}(\text { let }) \\
& \omega_{\triangle O^{\prime} A B}=2\left[\sin ^{-1}\left(\frac{c^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{c^{\prime}}{2 R^{\prime}}\right) \sec \frac{c}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right]=\omega_{3}(\text { let })
\end{aligned}
$$

Now, we must check out the nature of plane $\triangle A B C$ whether it is an acute, a right or an obtuse triangle. Since the largest side is \boldsymbol{c}^{\prime} among $\boldsymbol{a}^{\prime} \& \boldsymbol{b}^{\prime}$ hence we can determine the largest angle \boldsymbol{C}^{\prime} of plane $\triangle A B C$ using cosine formula as follows

$$
\cos C^{\prime}=\frac{a^{\prime 2}+b^{\prime 2}-c^{\prime 2}}{2 a^{\prime} b^{\prime}}
$$

Thus, there arise two cases to calculate the solid angle subtended by the plane $\triangle A B C$ at the centre of sphere \& so by the spherical triangle ABC as follows

Case 1: Corresponding plane $\triangle \boldsymbol{A B C}$ is an acute or a right triangle $\left(\forall \boldsymbol{c}^{\prime} \geq \boldsymbol{b}^{\prime} \geq \boldsymbol{a}^{\prime} \& \boldsymbol{C}^{\prime} \leq \mathbf{9 0}^{\boldsymbol{o}}\right)$:
In this case, the foot point O^{\prime} of the perpendicular drawn from the centre of sphere to the acute plane $\triangle A B C$ lies within or on the boundary of this triangle. All the values of solid angles $\omega_{1}, \omega_{2} \& \omega_{3}$ corresponding to all the sides $\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime} \& \boldsymbol{c}^{\prime}$ respectively of acute plane $\triangle \boldsymbol{A B C}$ are taken as positive. Hence, the solid angle ($\omega_{\triangle A B C}$) subtended by the acute plane $\triangle A B C$ at the centre of sphere is given as the sum of magnitudes of solid angles as follows

$$
\begin{gathered}
\omega=\omega_{\triangle A B C}=\omega_{\Delta O^{\prime} B C}+\omega_{\Delta O^{\prime} A C}+\omega_{\Delta O^{\prime} A B}=\omega_{1}+\omega_{2}+\omega_{3} \\
\therefore \text { Area covered by the spherical triangle } A B C=\omega R^{2}=R^{2}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)
\end{gathered}
$$

Case 2: Corresponding plane $\triangle A B C$ is an obtuse triangle $\left(\forall \boldsymbol{c}^{\prime}>\boldsymbol{b}^{\prime} \geq \boldsymbol{a}^{\prime} \& C^{\prime}>\mathbf{9 0}^{\circ}\right)$:
In this case, the foot point O^{\prime} of the perpendicular drawn from the centre of sphere to the obtuse plane $\triangle A B C$ lies outside the boundary of this triangle. (See the figure 3 below). In this case, solid angles $\omega_{1} \& \omega_{2}$ corresponding to the sides $\boldsymbol{a}^{\prime} \& \boldsymbol{b}^{\prime}$ respectively are taken as positive while solid angle $\boldsymbol{\omega}_{3}$ corresponding to the largest side \boldsymbol{c}^{\prime} of obtuse plane $\triangle \boldsymbol{A B C}$ is taken as negative. Hence, the solid angle ($\omega_{\triangle A B C}$) subtended by the obtuse plane $\triangle A B C$ at the centre of sphere is given as the algebraic sum of solid angles as follows

$$
\omega=\omega_{\triangle A B C}=\omega_{\Delta O^{\prime} B C}+\omega_{\triangle O^{\prime} A C}-\omega_{\Delta O^{\prime} A B}=\omega_{1}+\omega_{2}-\omega_{3}
$$

\therefore Area covered by the spherical triangle $A B C=\omega R^{2}=R^{2}\left(\omega_{1}+\omega_{2}-\omega_{3}\right)$

2. Graphical method for calculation of solid angle:

In this method, we first plot the diagram of corresponding plane $\triangle A B C$ having known sides $a^{\prime}, b^{\prime} \& c^{\prime} \&$ then specify the location of foot of perpendicular (F.O.P.) i.e. the circumscribed centre of plane $\triangle A B C$ then draw the perpendiculars from circumscribed centre to all the opposite sides to divide it (i.e. plane $\triangle A B C$) into elementary right triangles \& use standard formula-1 of right triangle for calculating the solid angle subtended by each of the elementary right triangles at the centre of sphere which is given as follows

"Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by HCR)"

$$
\omega=\sin ^{-1}\left(\frac{b}{\sqrt{b^{2}+a^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+a^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+a^{2}}}\right)\right\}
$$

Then find out the algebraic sum (ω) of the solid angles subtended by the elementary right triangles at the centre of the sphere \& hence the area covered by the spherical triangle ABC

$$
\text { Area covered by the spherical triangle } A B C=\omega R^{2}
$$

3. Analysis of spherical triangle (when two of its sides $\&$ an

 interior angle between them are known): Consider any spherical triangle $\triangle A B C$, having its two sides (each as a great circle arc) of lengths $\boldsymbol{a} \& \boldsymbol{b}$ and an interior angle \boldsymbol{C} between them, on a spherical surface with a radius \boldsymbol{R}. Now we can easily determine all its unknown parameters i.e. unknown side (\boldsymbol{c}), two interior angles $\boldsymbol{A} \& \boldsymbol{B}$ and area covered by it.Now the angles $\alpha, \beta \& \gamma$ are the angles subtended by the sides (each as a great circle arc) of spherical triangle at the centre of sphere which are determined as follows (See the figure 2 above)

$$
\alpha=\frac{\text { arc length }}{\text { radius }}=\frac{a}{R}, \beta=\frac{b}{R} \& \gamma=\frac{c}{R}=?(\operatorname{since}, c=?)
$$

Now, apply HCR's Inverse cosine formula for known interior angle C as follows

$$
\begin{aligned}
& C=\cos ^{-1}\left(\frac{\cos \gamma-\cos \alpha \cos \beta}{\sin \alpha \sin \beta}\right)=\cos ^{-1}\left(\frac{\cos \frac{c}{R}-\cos \frac{a}{R} \cos \frac{b}{R}}{\sin \frac{a}{R} \sin \frac{b}{R}}\right) \begin{array}{l}
\forall \boldsymbol{c}^{\prime}>\boldsymbol{b}^{\prime} \geq \boldsymbol{a}^{\prime} \& \boldsymbol{C}^{\prime}>\mathbf{9 0}^{\circ} . \text { Centre } \mathbf{O}(0 \\
\text { sphere is lying at a height h perpendicula। } \\
\text { the plane of paper }
\end{array} \\
& \Rightarrow \frac{\cos \frac{c}{R}-\cos \frac{a}{R} \cos \frac{b}{R}}{\sin \frac{a}{R} \sin \frac{b}{R}}=\cos C \Rightarrow \cos \frac{c}{R}=\sin \frac{a}{R} \sin \frac{b}{R} \cos C+\cos \frac{a}{R} \cos \frac{b}{R} \\
& \therefore \boldsymbol{c}=\boldsymbol{R} \cos ^{-1}\left(\sin \frac{\boldsymbol{a}}{\boldsymbol{R}} \sin \frac{\boldsymbol{b}}{\boldsymbol{R}} \cos \boldsymbol{C}+\cos \frac{\boldsymbol{a}}{\boldsymbol{R}} \cos \frac{\boldsymbol{b}}{\boldsymbol{R}}\right) \& \gamma=\frac{\boldsymbol{c}}{\boldsymbol{R}}=\cos ^{-1}\left(\sin \frac{\boldsymbol{a}}{\boldsymbol{R}} \sin \frac{\boldsymbol{b}}{\boldsymbol{R}} \cos C+\cos \frac{\boldsymbol{a}}{\boldsymbol{R}} \cos \frac{\boldsymbol{b}}{\boldsymbol{R}}\right)
\end{aligned}
$$

Again by applying HCR's Inverse cosine formula for calculating the unknown interior angle $\boldsymbol{A} \& B$ as follows

$$
\begin{aligned}
& A=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right)=\cos ^{-1}\left(\frac{\cos \frac{a}{R}-\cos \frac{b}{R} \cos \frac{c}{R}}{\sin \frac{b}{R} \sin \frac{c}{R}}\right) \\
& B=\cos ^{-1}\left(\frac{\cos \beta-\cos \alpha \cos \gamma}{\sin \alpha \sin \gamma}\right)=\cos ^{-1}\left(\frac{\cos \frac{b}{R}-\cos \frac{a}{R} \cos \frac{c}{R}}{\sin \frac{a}{R} \sin \frac{c}{R}}\right)
\end{aligned}
$$

Area of spherical triangle: In order to calculate area covered by the spherical triangle $A B C$, let's first calculate the solid angle subtended by it at the centre of sphere. But if we join the vertices $A, B \& C$ of spherical triangle by the straight lines then we obtain a corresponding plane $\triangle \boldsymbol{A B C}$ which exerts a solid angle equal to that subtended by the spherical triangle ABC at the centre of sphere. Now all the sides $a^{\prime}, b^{\prime} \& c^{\prime}$ of the plane $\triangle A B C$ can be calculated by following the previous method (as mentioned above) as follows

$$
a^{\prime}=2 R \sin \frac{a}{2 R}, \quad b^{\prime}=2 R \sin \frac{b}{2 R} \quad \& c^{\prime}=2 R \sin \frac{c}{2 R}
$$

Thus we can calculate the solid angle subtended by the corresponding plane $\triangle A B C$ \& so by the spherical triangle $A B C$ at the centre of sphere by following the previous two methods 1) Analytic \& 2) Graphical (See the above procedures). Hence we can calculate the area covered by the given spherical triangle.

Illustrative Numerical Examples

These examples are based on all above articles which are very practical and directly \& simply applicable to calculate the different parameters of a spherical triangle. For ease of understanding $\&$ the calculations, the value of side c of the spherical triangle $A B C$ is taken as the largest one).

Example 1: Calculate the area $\&$ each of the interior angles of a spherical triangle, having its sides (each as a great circle arc) of lengths $12,18 \& 20$ units, on the spherical surface with a radius 50 units.

Sol. Here, we have

$$
R=50 \text { units, } a=12 \text { units, } b=18 \text { units, } c=20 \text { units } \Rightarrow A, B, C=? \& \text { Area }=\text { ? }
$$

Now, all the interior angles of spherical triangle can be easily calculated by using inverse cosine formula as follows

$$
\begin{aligned}
& \Rightarrow \boldsymbol{A}=\cos ^{-1}\left(\frac{\cos \frac{a}{R}-\cos \frac{b}{R} \cos \frac{c}{R}}{\sin \frac{b}{R} \sin \frac{c}{R}}\right)=\cos ^{-1}\left(\frac{\cos \frac{12}{50}-\cos \frac{18}{50} \cos \frac{20}{50}}{\sin \frac{18}{50} \sin \frac{20}{50}}\right) \approx \mathbf{3 7 . 1 6 5 2 3 1}{ }^{\circ} \approx \mathbf{3 7}^{\circ} \mathbf{9}^{\prime} \mathbf{5 4 . 8 3} \mathbf{8 3}^{\prime \prime} \\
& B=\cos ^{-1}\left(\frac{\cos \frac{b}{R}-\cos \frac{a}{R} \cos \frac{c}{R}}{\sin \frac{a}{R} \sin \frac{c}{R}}\right)=\cos ^{-1}\left(\frac{\cos \frac{18}{50}-\cos \frac{12}{50} \cos \frac{20}{50}}{\sin \frac{12}{50} \sin \frac{20}{50}}\right) \approx 63.54656423^{\circ} \approx \mathbf{6 3}^{\circ} \mathbf{3 2} \mathbf{2}^{\prime} 47.63^{\prime \prime} \\
& \boldsymbol{C}=\cos ^{-1}\left(\frac{\cos \frac{c}{R}-\cos \frac{a}{R} \cos \frac{b}{R}}{\sin \frac{a}{R} \sin \frac{b}{R}}\right)=\cos ^{-1}\left(\frac{\cos \frac{20}{50}-\cos \frac{12}{50} \cos \frac{18}{50}}{\sin \frac{12}{50} \sin \frac{18}{50}}\right) \approx \mathbf{8 1 . 7 6 8 4 6 1 7 4}{ }^{\circ} \approx \mathbf{8 1}^{\circ} \mathbf{4 6}^{\prime} \mathbf{6 . 4 6}^{\prime \prime} \\
& \Rightarrow A+B+C>\mathbf{1 8 0}^{\circ} \quad \text { (property of spherical triangle) }
\end{aligned}
$$

Now, the sides of corresponding plane $\triangle A B C$ are calculated as follows

$$
\begin{gathered}
a^{\prime}=2 R \sin \frac{a}{2 R}=2(50) \sin \frac{12}{100} \approx 11.97122073 \\
b^{\prime}=2 R \sin \frac{b}{2 R}=2(50) \sin \frac{18}{100} \approx 17.90295734 \\
c^{\prime}=2 R \sin \frac{c}{2 R}=2(50) \sin \frac{20}{100} \approx 19.86693308 \\
s=\text { semiperimeter }=\frac{a^{\prime}+b^{\prime}+c^{\prime}}{2} \approx \frac{11.97122073+17.90295734+19.86693308}{2} \approx 24.87055558
\end{gathered}
$$

Area of plane $\triangle A B C$ is given as

$$
\Delta=\sqrt{s\left(s-a^{\prime}\right)\left(s-b^{\prime}\right)\left(s-c^{\prime}\right)}
$$

$$
\begin{aligned}
& \approx \sqrt{24.87055558(24.87055558-11.97122073)(24.87055558-17.90295734)(24.87055558-19.86693308)} \\
& \approx \sqrt{24.87055558 \times 12.89933485 \times 6.96759824 \times 5.0036225} \approx 105.7572673
\end{aligned}
$$

$$
\therefore \text { circumscribed radius, } R^{\prime}=\frac{a^{\prime} b^{\prime} c^{\prime}}{4 \Delta} \approx \frac{11.97122073 \times 17.90295734 \times 19.86693308}{4 \times 105.7572673} \approx 10.06523299
$$

Since, the largest side of plane $\triangle A B C$ is $c^{\prime} \approx 19.86693308$ hence the largest angle of the plane $\triangle A B C$ is C^{\prime} which is calculated by using cosine formula as follows

$$
\begin{gathered}
\cos C^{\prime}=\frac{a^{\prime 2}+b^{\prime 2}-c^{\prime 2}}{2 a^{\prime} b^{\prime}} \Rightarrow C^{\prime}=\cos ^{-1}\left(\frac{a^{\prime 2}+b^{\prime 2}-c^{\prime 2}}{2 a^{\prime} b^{\prime}}\right) \\
C^{\prime} \approx \cos ^{-1}\left(\frac{(11.97122073)^{2}+(17.90295734)^{2}-(19.86693308)^{2}}{2(11.97122073)(17.90295734)}\right) \approx 80.71882239^{\circ}<90^{\circ}
\end{gathered}
$$

Hence, the plane $\triangle A B C$ is an acute angled triangle.
Note: If all the interior angles $A, B \& C$ of any spherical triangle are acute then definitely the corresponding plane $\triangle A B C$ will also be an acute angled triangle. It is not required to check it out by calculating the largest angle C^{\prime} of plane $\triangle A B C$. (As in above example 1, we need not calculate the largest angle C^{\prime} to check out the nature of the plane $\triangle A B C$ we can directly say on the basis of values of interior angles $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ of the spherical surface that the plane $\triangle A B C$ is an acute if each of $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ is an acute angle)

Hence the foot of perpendicular (F.O.P.) drawn from the centre of sphere to the plane $\triangle A B C$ will lie within the boundary of plane $\triangle A B C$ (See the figure 2 above) hence, the solid angle subtended by it at the centre of sphere is calculated as follows

$$
\begin{gathered}
\omega_{1}=2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{a^{\prime}}{2 R^{\prime}}\right) \sec \frac{a}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right] \\
\approx 2\left[\sin ^{-1}\left(\frac{11.97122073}{2(10.06523299)}\right)-\sin ^{-1}\left(\left(\frac{11.97122073}{2(10.06523299)}\right) \sec \frac{12}{2(50)} \sqrt{1-\left(\frac{10.06523299}{50}\right)^{2}}\right)\right] \\
\approx \mathbf{0 . 0 1 9 7 1 6 8 2 7} \operatorname{sr} \\
\approx 2\left[\sin _{2}^{-1}\left(\frac{17.90295734}{2(10.06523299)}\right)-\sin ^{-1}\left(\left(\frac{17.90295734}{2(10.06523299)}\right) \sec \frac{18}{2(50)} \sqrt{1-\left(\frac{10.06523299}{5}\right)^{2}}\right)\right] \\
\approx \mathbf{0 . 0 1 6 9 2 2 4 9 7} \operatorname{sr} \\
\approx
\end{gathered}
$$

$$
\begin{gathered}
\approx 2\left[\sin ^{-1}\left(\frac{19.86693308}{2(10.06523299)}\right)-\sin ^{-1}\left(\left(\frac{19.86693308}{2(10.06523299)}\right) \sec \frac{20}{2(50)} \sqrt{1-\left(\frac{10.06523299}{50}\right)^{2}}\right)\right] \\
\approx \mathbf{0 . 0 0 6 6 4 9 3 2 4 7 2} \boldsymbol{s r}
\end{gathered}
$$

Note: In this case, all the values of solid angles $\omega_{1}, \omega_{2} \& \omega_{3}$ corresponding to all the sides $a^{\prime}, b^{\prime} \& c^{\prime}$ respectively of the acute plane $\triangle A B C$ are taken as positive.

Hence, the solid angle $\left(\omega_{\triangle A B C}\right)$ subtended by the acute plane $\triangle A B C$ or spherical triangle $A B C$ at the centre of sphere is given as the sum of magnitudes of solid angles as follows

$$
\boldsymbol{\omega}=\omega_{1}+\omega_{2}+\omega_{3} \approx 0.019716827+0.016922497+0.00664932472 \approx \mathbf{0 . 0 4 3 2 8 8 6 4 8} \boldsymbol{s r}
$$

\therefore Area covered by the spherical triangle $\boldsymbol{A B C}=\omega \boldsymbol{R}^{2} \approx 0.043288648 \times 50^{2}$

$$
\approx 108.2216218 \text { unit }^{2}
$$

Ans

The above value of area implies that the given spherical triangle covers $\approx \mathbf{1 0 8} 2216218$ unit 2 of the total surface area $=4 \pi(50)^{2} \approx 31415.92654$ unit $^{2} \&$ subtends a solid angle $\approx 0.043288648 \mathrm{sr}$ at the centre of the sphere with a radius 50 units.

Example 2: A spherical triangle, having its two sides (each as a great circle arc) of lengths $25 \& 38$ units and an interior angle 160° included by them, on the spherical surface with a radius $\mathbf{2 0 0}$ units. Calculate the unknown side, interior angles \& the area covered by it.

Sol. Here, we have

$$
R=200 \text { units, } a=25 \text { units, } b=38 \text { units, } \quad C=160^{\circ}=\frac{8 \pi}{9} \Rightarrow c=?, A, B=? \& \text { Area }=?
$$

Now in order to calculate unknown side c, apply HCR's Inverse cosine formula for known interior angle C as follows

$$
\begin{gathered}
C=\cos ^{-1}\left(\frac{\cos \frac{c}{R}-\cos \frac{a}{R} \cos \frac{b}{R}}{\sin \frac{a}{R} \sin \frac{b}{R}}\right) \Rightarrow c=R \cos ^{-1}\left(\sin \frac{a}{R} \sin \frac{b}{R} \cos C+\cos \frac{a}{R} \cos \frac{b}{R}\right) \\
\boldsymbol{c}=200 \cos ^{-1}\left(\sin \frac{25}{200} \sin \frac{38}{200} \cos \frac{8 \pi}{9}+\cos \frac{25}{200} \cos \frac{38}{200}\right) \approx \mathbf{6 2 . 0 7 6 7 9 0 0 3}
\end{gathered}
$$

Again by applying HCR's Inverse cosine formula for calculating the unknown interior angle $A \& B$ as follows

$$
\begin{gathered}
\boldsymbol{A}=\cos ^{-1}\left(\frac{\cos \frac{a}{R}-\cos \frac{b}{R} \cos \frac{c}{R}}{\sin \frac{b}{R} \sin \frac{c}{R}}\right)=\cos ^{-1}\left(\frac{\cos \frac{25}{200}-\cos \frac{38}{200} \cos \frac{62.07679003}{200}}{\sin \frac{38}{200} \sin \frac{62.07679003}{200}}\right) \approx \mathbf{8}^{\boldsymbol{o}} \mathbf{1}^{\prime} \mathbf{3 1 . 6 8} \mathbf{8}^{\prime \prime} \\
\boldsymbol{B}=\cos ^{-1}\left(\frac{\cos \frac{b}{R}-\cos \frac{a}{R} \cos \frac{c}{R}}{\sin \frac{a}{R} \sin \frac{c}{R}}\right)=\cos ^{-1}\left(\frac{\cos \frac{38}{200}-\cos \frac{25}{200} \cos \frac{62.07679003}{200}}{\sin \frac{25}{200} \sin \frac{62.07679003}{200}}\right) \approx \mathbf{1 2}^{\boldsymbol{o}} \mathbf{1 2}^{\prime} \mathbf{3 4 . 4 3} \mathbf{3}^{\prime \prime} \\
\Rightarrow \boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}>\mathbf{1 8 0}^{\boldsymbol{\prime}} \quad(\text { property of spherical triangle })
\end{gathered}
$$

Now, the sides of corresponding plane $\triangle A B C$ are calculated as follows

$$
\begin{gathered}
a^{\prime}=2 R \sin \frac{a}{2 R}=2(200) \sin \frac{25}{400} \approx 24.98372714 \\
b^{\prime}=2 R \sin \frac{b}{2 R}=2(200) \sin \frac{38}{400} \approx 37.94286745 \\
c^{\prime}=2 R \sin \frac{c}{2 R}=2(200) \sin \frac{62.07679003}{400} \approx 61.82790801 \\
s=\text { semiperimeter }=\frac{a^{\prime}+b^{\prime}+c^{\prime}}{2} \approx \frac{24.98372714+37.94286745+61.82790801}{2} \approx 62.3772513
\end{gathered}
$$

Area of plane $\triangle A B C$ is given as

$$
\Delta=\sqrt{s\left(s-a^{\prime}\right)\left(s-b^{\prime}\right)\left(s-c^{\prime}\right)}
$$

$\approx \sqrt{62.3772513(62.3772513-24.98372714)(62.3772513-37.94286745)(62.3772513-61.82790801)}$
$\approx \sqrt{62.3772513 \times 37.39352416 \times 24.43438385 \times 0.54934329} \approx 176.9432188$
\therefore circumscribed radius, $R^{\prime}=\frac{a^{\prime} b^{\prime} c^{\prime}}{4 \Delta} \approx \frac{24.98372714 \times 37.94286745 \times 61.82790801}{4 \times 176.9432188} \approx 82.80909039$
Since, the largest side of plane $\triangle A B C$ is $c^{\prime} \approx 61.82790801$ hence the largest angle of the plane $\triangle A B C$ is C^{\prime} which is calculated by using cosine formula as follows

$$
\begin{gathered}
\cos C^{\prime}=\frac{a^{\prime 2}+b^{\prime 2}-c^{\prime 2}}{2 a^{\prime} b^{\prime}} \Rightarrow C^{\prime}=\cos ^{-1}\left(\frac{a^{\prime 2}+b^{\prime 2}-c^{\prime 2}}{2 a^{\prime} b^{\prime}}\right) \\
C^{\prime} \approx \cos ^{-1}\left(\frac{(24.98372714)^{2}+(37.94286745)^{2}-(61.82790801)^{2}}{2(24.98372714)(37.94286745)}\right) \approx 158.0797337^{\circ}>90^{\circ}
\end{gathered}
$$

Hence, the plane $\triangle A B C$ is an obtuse angled triangle.
Hence the foot of perpendicular (F.O.P.) drawn from the centre of sphere to the plane $\triangle A B C$ will lie outside the boundary of plane $\triangle A B C$ (See the figure 3 above) hence, the solid angle subtended by it at the centre of sphere is calculated as follows

$$
\begin{gathered}
\boldsymbol{\omega}_{\mathbf{1}}=2\left[\sin ^{-1}\left(\frac{a^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{a^{\prime}}{2 R^{\prime}}\right) \sec \frac{a}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right] \\
\approx 2\left[\sin ^{-1}\left(\frac{24.98372714}{2(82.80909039)}\right)-\sin ^{-1}\left(\left(\frac{24.98372714}{2(82.80909039)}\right) \sec \frac{25}{2(200)} \sqrt{1-\left(\frac{82.80909039}{200}\right)^{2}}\right)\right] \\
\approx \mathbf{0 . 0 2 6 8 1 9 2 6 7} \operatorname{sr} \\
\boldsymbol{\omega}_{2}=2\left[\sin ^{-1}\left(\frac{b^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{b^{\prime}}{2 R^{\prime}}\right) \sec \frac{b}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
& \approx 2\left[\sin ^{-1}\left(\frac{37.94286745}{2(82.80909039)}\right)-\sin ^{-1}\left(\left(\frac{37.94286745}{2(82.80909039)}\right) \sec \frac{38}{2(200)} \sqrt{1-\left(\frac{82.80909039}{200}\right)^{2}}\right)\right] \\
& \approx \mathbf{0 . 0 4 0 2 1 0 6 7} \mathbf{s r} \\
& \omega_{3}=2\left[\sin ^{-1}\left(\frac{c^{\prime}}{2 R^{\prime}}\right)-\sin ^{-1}\left(\left(\frac{c^{\prime}}{2 R^{\prime}}\right) \sec \frac{c}{2 R} \sqrt{1-\left(\frac{R^{\prime}}{R}\right)^{2}}\right)\right] \\
& \approx 2\left[\sin ^{-1}\left(\frac{61.82790801}{2(82.80909039)}\right)-\sin ^{-1}\left(\left(\frac{61.82790801}{2(82.80909039)}\right) \sec \frac{62.07679003}{2(200)} \sqrt{1-\left(\frac{82.80909039}{200}\right)^{2}}\right)\right] \\
& \approx \mathbf{0 . 0 6 2 9 2 7 8 9 2} \mathbf{s r}
\end{aligned}
$$

Note: In this case, solid angles $\omega_{1} \& \omega_{2}$ corresponding to the sides $\boldsymbol{a}^{\prime} \& \boldsymbol{b}^{\prime}$ respectively are taken as positive while solid angle ω_{3} corresponding to the largest side c^{\prime} of obtuse plane $\triangle A B C$ is taken as negative.

Hence, the solid angle ($\omega_{\triangle A B C}$) subtended by the obtuse plane $\triangle A B C$ or spherical triangle $A B C$ at the centre of sphere is given as the algebraic sum of solid angles as follows

$$
\boldsymbol{\omega}=\omega_{1}+\omega_{2}-\omega_{3} \approx 0.026819267+0.04021067-0.062927892 \approx 0.004102045 \boldsymbol{s r}
$$

\therefore Area covered by the spherical triangle $\boldsymbol{A B C}=\omega \boldsymbol{R}^{\mathbf{2}} \approx 0.00646329 \times 200^{2}$

$$
\approx 164.0818 u n i t^{2}
$$

Ans

The above value of area implies that the given spherical triangle covers ≈ 164.0818 unit 2 of the total surface area $=4 \pi(200)^{2} \approx 502654.8246$ unit $^{2} \&$ subtends a solid angle $\approx 0.004102045 \mathrm{sr}$ at the centre of the sphere with a radius 200 units.

Conclusion: All the articles above have been derived by Mr H.C. Rajpoot by using simple geometry \& trigonometry. All above articles (formula) are very practical \& simple to apply in case of a spherical triangle to calculate all its important parameters such as solid angle, surface area covered, interior angles etc. \& also useful for calculating all the parameters of the corresponding plane triangle obtained by joining all the vertices of a spherical triangle by the straight lines. These formulae can also be used to calculate all the parameters of the right pyramid obtained by joining all the vertices of a spherical triangle to the centre of sphere such as normal height, angle between the consecutive lateral edges, area of plane triangular base etc.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

Jan, 2015

Email:rajpootharishchandra@gmail.com

Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

