"Mathematical Analysis of Spherical Rectangle (Spherical Geometry by HCR)"

Mathematical Analysis of Spherical Rectangle
 Application of HCR's Inverse Cosine Formula \& Theory of Polygon

Mr Harish Chandra Rajpoot
Feb, 2015

M.M.M. University of Technology, Gorakhpur-273010 (UP), India

1. Introduction: We know that a spherical rectangle is a 3-D figure, on a spherical surface, enclosed by four sides (each as a great circle arc) such that each pair of the non-parallel \& opposite sides is equal in arc length \& all four interior angles are equal in magnitude but each is greater than $\mathbf{9 0}^{\circ}$ (property of a spherical rectangle). (See figure 1 below)
2. Analysis of spherical rectangle (when the length \& the width are known): Consider any spherical rectangle ABCD having its length \& width (each as a great circle arc) as $l \& b$ ($\forall l \geq b)$ respectively on a spherical surface with a radius R such that each interior angle is $\theta\left(\forall \theta>90^{\circ}\right) \quad$ (as shown in the figure 1)

Interior angle ($\boldsymbol{\theta}$) of spherical rectangle: We know that each interior angle of a spherical rectangle is the angle between the planes of great circle arcs representing any two of its consecutive sides. Now, join all the vertices $A, B, C \& D$ by the straight lines to obtain a corresponding plane rectangle $A B C D$ (as shown by the dotted lines $A B, B C, C D \& D A$) having centre at the point O^{\prime}. Now the length $l^{\prime} \&$ the width b^{\prime} of the plane rectangle ABCD are calculated as follows

$$
\angle A O B=\frac{\text { arc length }}{\text { radius }}=\frac{l}{R} \& \angle B O C=\frac{b}{R}
$$

In (plane) isosceles $\triangle A O B$

$$
\sin \left(\frac{\angle A O B}{2}\right)=\frac{\left(\frac{A B}{2}\right)}{O A}
$$

$$
\sin \frac{l}{2 R}=\frac{l^{\prime}}{R}=\frac{l^{\prime}}{2 R}
$$

$$
\boldsymbol{l}^{\prime}=2 R \sin \frac{l}{2 R} \& \operatorname{similarly}, \quad b^{\prime}=2 R \sin \frac{b}{2 R}
$$

Figure 1: A spherical rectangle $A B C D$ having its length $\&$ width (each as a great circle arc) as $l \& b$ respectively \& each interior angle $\boldsymbol{\theta}\left(\forall \boldsymbol{\theta}>\mathbf{9 0}^{\boldsymbol{o}}\right)$. A plane rectangle ABCD corresponding to the spherical rectangle $A B C D$ is obtained by joining the vertices $A, B, C \& D$ by the straight lines.
\therefore diagonal of the plane rectangle $A B C D, A C=\sqrt{l^{\prime 2}+b^{\prime 2}}$

$$
\begin{equation*}
\Rightarrow \boldsymbol{A C}=\sqrt{\left(2 R \sin \frac{l}{2 R}\right)^{2}+\left(2 R \sin \frac{b}{2 R}\right)^{2}}=2 R \sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}} \tag{I}
\end{equation*}
$$

"Mathematical Analysis of Spherical Rectangle (Spherical Geometry by HCR)"

In (plane) isosceles $\triangle A O C$

$$
\begin{gathered}
\sin \left(\frac{\angle A O C}{2}\right)=\frac{\left(\frac{A C}{2}\right)}{O A} \Rightarrow \sin \frac{\operatorname{acr} A C}{2 R}=\frac{A C}{2 R}\left(\angle \boldsymbol{A O C}=\frac{\boldsymbol{a r c} \boldsymbol{A C}}{\boldsymbol{r a d i u s}}=\frac{\boldsymbol{\operatorname { a r c } \boldsymbol { A C }}}{\boldsymbol{R}}\right) \\
\Rightarrow \frac{\operatorname{arc} A C}{2 R}=\sin ^{-1}\left(\frac{A C}{2 R}\right) \quad \text { Or } \operatorname{arc} A C=2 R \sin ^{-1}\left(\frac{2 R \sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}}}{2 R}\right)(\text { from eq }(I)) \\
\therefore \operatorname{arc} \boldsymbol{A C}=2 R \sin ^{-1}\left(\sqrt{\sin ^{2} \frac{\boldsymbol{l}}{2 R}+\sin ^{2} \frac{\boldsymbol{b}}{2 R}}\right)
\end{gathered}
$$

Now, consider the tetrahedron OABC having angles $\angle \boldsymbol{A O B}, \angle \boldsymbol{B O C} \& \angle \boldsymbol{A O C}$ between its consecutive lateral edges $O A \& O B, O B \& O C$ and $O A \& O C$ respectively meeting at the vertex O (i.e. centre of the sphere). Now these are the angles subtended by the sides (each as a great circle arc) AB, BC \& CA respectively of the spherical triangle $A B C$ at the centre of sphere which are determined as follows

$$
\angle A O B=\frac{\operatorname{arc} \text { length }}{\text { radius }}=\frac{l}{R}, \angle B O C=\frac{b}{R} \& \angle A O C=\frac{\operatorname{arc} A C}{R}
$$

Now each of the interior angles θ of the spherical rectangle ABCD is equal to the angle between consecutive lateral triangular faces $\triangle A O B \& \triangle B O C$ of the tetrahedron $O A B C$ meeting at the vertex O (i.e. the centre of sphere), are determined/calculated by using HCR's Inverse Cosine Formula according to which if $\boldsymbol{\alpha}, \boldsymbol{\beta} \& \boldsymbol{\gamma}$ are the angles between consecutive lateral edges meeting at any of the four vertices of a tetrahedron then the angle (opposite to $\boldsymbol{\alpha}$) between two lateral faces is given as follows

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right) \\
& \therefore \boldsymbol{\theta}=\cos ^{-1}\left(\frac{\cos \frac{\operatorname{arc} A C}{R}-\cos \frac{l}{R} \cos \frac{b}{R}}{\sin \frac{l}{R} \sin \frac{b}{R}}\right) \\
& =\cos ^{-1}\left(\frac{\cos \left(\frac{2 R \sin ^{-1}\left(\sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}}\right)}{R}\right)-\cos \frac{l}{R} \cos \frac{b}{R}}{\sin \frac{l}{R} \sin \frac{b}{R}}\right) \\
& \theta=\cos ^{-1}\left(\frac{\cos \left(2 \sin ^{-1}\left(\sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}}\right)\right)-\cos \frac{l}{R} \cos \frac{b}{R}}{\sin \frac{l}{R} \sin \frac{b}{R}}\right) \\
& \forall l, b, R>0 \& l+b<\pi R \Rightarrow 90^{\circ}<\theta<\mathbf{1 8 0}^{\circ}
\end{aligned}
$$

"Mathematical Analysis of Spherical Rectangle (Spherical Geometry by HCR)"

Above is the required expression to determine each of the interior angles θ of any spherical rectangle having length $\boldsymbol{l} \&$ width \boldsymbol{b} (each as a great circle arc) on a spherical surface with a radius \boldsymbol{R}.

Area covered by the spherical rectangle: In order to calculate area covered by the spherical rectangle $A B C D$, let's first calculate the solid angle subtended by it at the centre O of the sphere. But if we join the all the vertices $A, B, C \& D$ of the spherical rectangle $A B C D$ by the straight lines then we obtain a corresponding plane rectangle $A B C D$ which exerts a solid angle equal to that subtended by the spherical rectangle $A B C D$ at the centre of sphere. So let's calculate the normal height $O O^{\prime}=h$ of the plane rectangle ABCD with centre O^{\prime} from the centre O of the sphere as follows

In right $\triangle \boldsymbol{A} \boldsymbol{O}^{\prime} \boldsymbol{O}$ (perpendicular to the plane of paper)

$$
\begin{aligned}
& O O^{\prime}=\sqrt{(O A)^{2}-\left(A O^{\prime}\right)^{2}}=\sqrt{(O A)^{2}-\left(\frac{A C}{2}\right)^{2}} \quad\left(\text { since }, A O^{\prime}=O^{\prime} C=\frac{A C}{2}\right) \\
& \text { or } h=\sqrt{(R)^{2}-\left(\frac{2 R \sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}}}{2}\right)^{2}} \quad(\text { from eq }(I)) \\
&=\sqrt{R^{2}-R^{2}\left(\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}\right)}=R \sqrt{1-\sin ^{2} \frac{l}{2 R}-\sin ^{2} \frac{b}{2 R}} \\
& \boldsymbol{h}=\boldsymbol{R} \sqrt{\cos ^{2} \frac{b}{2 R}-\sin ^{2} \frac{l}{2 R}}
\end{aligned}
$$

Figure 2: Plane rectangle $A B C D$ is obtained by joining all the vertices $A, B, C \& D$ of spherical rectangle $A B C D$ by the straight lines. The centre point $O(0,0, h)$ is lying at a height h perpendicularly outwards to the plane of paper

Thus we calculate the solid angle (ω) subtended by the corresponding plane rectangle ABCD \& so by the spherical rectangle ABCD at the centre of sphere by using standard formula of rectangular plane given by HCR's Theory of Polygon according to which the solid angle (ω) subtended by any rectangular plane having length \& width \boldsymbol{l} \& \boldsymbol{b} respectively at any point lying at a normal height \boldsymbol{h} from the centre is given as

$$
\omega=4 \sin ^{-1}\left(\frac{l b}{\sqrt{\left(l^{2}+4 h^{2}\right)\left(b^{2}+4 h^{2}\right)}}\right)
$$

Now by setting the corresponding values in the above expression, we get the solid angle subtended by the plane rectangle $A B C D$ at the centre of sphere as follows

$$
\omega=4 \sin ^{-1}\left(\frac{l^{\prime} b^{\prime}}{\sqrt{\left(l^{\prime 2}+4 h^{2}\right)\left(b^{\prime 2}+4 h^{2}\right)}}\right)
$$

$=4 \sin ^{-1}\left(\frac{\left(2 R \sin \frac{l}{2 R}\right)\left(2 R \sin \frac{b}{2 R}\right)}{\sqrt{\left(\left(2 R \sin \frac{l}{2 R}\right)^{2}+4\left(R \sqrt{\cos ^{2} \frac{b}{2 R}-\sin ^{2} \frac{l}{2 R}}\right)^{2}\right)\left(\left(2 R \sin \frac{b}{2 R}\right)^{2}+4\left(R \sqrt{\cos ^{2} \frac{b}{2 R}-\sin ^{2} \frac{l}{2 R}}\right)^{2}\right)}}\right)$

$$
\begin{gathered}
=4 \sin ^{-1}\left(\frac{4 R^{2} \sin \frac{l}{2 R} \sin \frac{b}{2 R}}{4 R^{2} \sqrt{\left(\sin ^{2} \frac{l}{2 R}+\cos ^{2} \frac{b}{2 R}-\sin ^{2} \frac{l}{2 R}\right)\left(\sin ^{2} \frac{b}{2 R}+\cos ^{2} \frac{b}{2 R}-\sin ^{2} \frac{l}{2 R}\right)}}\right) \\
=4 \sin ^{-1}\left(\frac{\sin \frac{l}{2 R} \sin \frac{b}{2 R}}{\sqrt{\left(\cos ^{2} \frac{b}{2 R}\right)\left(1-\sin ^{2} \frac{l}{2 R}\right)}}\right)=4 \sin ^{-1}\left(\frac{\sin \frac{l}{2 R} \sin \frac{b}{2 R}}{\sqrt{\left(\cos ^{2} \frac{b}{2 R}\right)\left(\cos ^{2} \frac{l}{2 R}\right)}}\right)=4 \sin ^{-1}\left(\frac{\sin \frac{l}{2 R} \sin \frac{b}{2 R}}{\cos \frac{l}{2 R} \cos \frac{b}{2 R}}\right) \\
\Rightarrow \boldsymbol{\omega}=\mathbf{4} \sin ^{-\mathbf{1}}\left(\boldsymbol{\operatorname { t a n } \frac { \boldsymbol { l } } { 2 R } \boldsymbol { \operatorname { t a n } } \frac { \boldsymbol { b } } { \mathbf { 2 R } })}\right.
\end{gathered}
$$

Above is the required expression for calculating the solid angle subtended by any spherical rectangle having length l \& width b (each as a great circle arc) at the centre of a spherical surface with a radius \boldsymbol{R}.

Hence, the area (A) covered by the spherical rectangle $A B C D$ is given as

$$
\begin{gathered}
A=\omega \times(\text { radius })^{2}=\omega R^{2}=4 \sin ^{-1}\left(\tan \frac{l}{2 R} \tan \frac{b}{2 R}\right) \times R^{2} \\
\boldsymbol{A}=\boldsymbol{4} \boldsymbol{R}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }}^{\mathbf{- 1}}\left(\boldsymbol{\operatorname { t a n }} \frac{\boldsymbol{l}}{\mathbf{2 R}} \boldsymbol{\operatorname { t a n }} \frac{\boldsymbol{b}}{\mathbf{2 R}}\right) \quad \forall \boldsymbol{l}, \boldsymbol{b}, \boldsymbol{R}>\mathbf{0} \& \boldsymbol{l}+\boldsymbol{b}<\boldsymbol{\pi} \boldsymbol{R}
\end{gathered}
$$

Above is the required expression for calculating the area covered by any spherical rectangle having length l \& width b (each as a great circle arc) on a spherical surface with a radius R.

Illustrative Numerical Example

This example is based on all above articles which are very practical and directly \& simply applicable to calculate the different parameters of any spherical rectangle such as the interior angle \& the area covered by it.

Example 1: Calculate the area \& each of the interior angles of a spherical rectangle, having its length \& width (each as a great circle arc) of $15 \& 4$ units respectively, on a spherical surface with a radius 40 units.

Sol. Here, we have

$$
R=40 \text { units, } l=15 \text { units, } b=4 \text { units } \Rightarrow \theta=? \& \text { Area }(A)=?
$$

Now, each of the interior angles (θ) of the given spherical rectangle can be easily calculated by using formula as follows

$$
\theta=\cos ^{-1}\left(\frac{\cos \left(2 \sin ^{-1}\left(\sqrt{\sin ^{2} \frac{l}{2 R}+\sin ^{2} \frac{b}{2 R}}\right)\right)-\cos \frac{l}{R} \cos \frac{b}{R}}{\sin \frac{l}{R} \sin \frac{b}{R}}\right)
$$

Now by setting the corresponding values of $R, l \& b$, we get

$$
\theta=\cos ^{-1}\left(\frac{\cos \left(2 \sin ^{-1}\left(\sqrt{\sin ^{2} \frac{15}{2(40)}+\sin ^{2} \frac{4}{2(40)}}\right)\right)-\cos \frac{15}{40} \cos \frac{4}{40}}{\sin \frac{15}{40} \sin \frac{4}{40}}\right) \approx 90.543994^{\circ} \approx \mathbf{9 0}^{\circ} \mathbf{3 2 ^ { \prime }} \mathbf{3 8 . 3 8 ^ { \prime \prime }}
$$

"Mathematical Analysis of Spherical Rectangle (Spherical Geometry by HCR)"

$$
\Rightarrow \theta>90^{\circ} \quad(\text { property of a spherical rectangle })
$$

Now, the area (\boldsymbol{A}) covered by the spherical rectangle on the spherical surface is given as follows

$$
\begin{gathered}
\boldsymbol{A}=4 R^{2} \sin ^{-1}\left(\tan \frac{l}{2 R} \tan \frac{b}{2 R}\right)=4(40)^{2} \sin ^{-1}\left(\tan \frac{15}{2(40)} \tan \frac{4}{2(40)}\right) \\
=6400 \sin ^{-1}\left(\tan \frac{15}{80} \tan \frac{1}{20}\right) \approx \mathbf{6 0 . 7 6 4 7 1 3 3 1} \text { unit }^{2}
\end{gathered}
$$

While the solid angle subtended by the spherical rectangle at the centre of sphere is given as follows

$$
\boldsymbol{\omega}=4 \sin ^{-1}\left(\tan \frac{l}{2 R} \tan \frac{b}{2 R}\right)=4 \sin ^{-1}\left(\tan \frac{15}{80} \tan \frac{4}{80}\right) \approx \mathbf{0 . 0 3 7 9 7 7 9 4 5} \boldsymbol{s r}
$$

The above value of area implies that the given spherical rectangle covers $\approx \mathbf{6 0 . 7 6 4 7 1 3 3 1}$ unit 2 of the total surface area $=4 \pi(40)^{2} \approx 20106.19298$ unit $^{2} \&$ subtends a solid angle ≈ 0.037977945 sr at the centre of the sphere with a radius 40 units.

Conclusion: All the articles above have been derived by Mr H.C. Rajpoot by using simple geometry \& trigonometry. All above articles (formula) are very practical \& simple to apply in case of any spherical rectangle to calculate all its important parameters such as solid angle, surface area covered, interior angles etc. \& also useful for calculating all the parameters of the corresponding plane rectangle obtained by joining all the vertices of a spherical rectangle by the straight lines. These formulae can also be used to calculate all the parameters of the right pyramid obtained by joining all the vertices of a spherical rectangle to the centre of the sphere such as normal height, angle between the consecutive lateral edges, area of plane rectangular base etc.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

Feb, 2015

Email:rajpootharishchandra@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

