Derivations of inscribed \& circumscribed radii for three externally touching circles

Mathematical Analysis of Three Externally Touching Circles

Mr Harish Chandra Rajpoot

Feb, 2015
M.M.M. University of Technology, Gorakhpur-273010 (UP), India

1. Introduction:

Consider three circles having centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ and radii $a, b \& c$ respectively, touching each other externally such that a small circle P is inscribed in the gap \& touches them externally \& a large circle Q circumscribes them \& is touched by them internally. We are to calculate the radii of inscribed circle \mathbf{P} (touching three circles with centres A, B \& C externally) \& circumscribed circle \mathbf{Q} (touched by three circles with centres A, B \& C internally) (See figure 1)
2. Derivation of the radius of inscribed circle: Let r be the radius of inscribed circle, with centre O , externally touching the given circles, having centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ and radii $a, b \& c$, at the points $\mathrm{M}, \mathrm{N} \& \mathrm{P}$ respectively. Now join the centre O to the centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ by dotted straight lines to obtain $\triangle A O B, \triangle B O C \& \triangle A O C \&$ also join the centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ by dotted straight lines
to obtain $\triangle A B C$ (As shown in the figure 2 below) Thus we have

$$
\begin{gathered}
A M=a, \quad B N=b, \quad C P=c \& \\
O M=O N=O P=r(\text { radius of inscribed circle })
\end{gathered}
$$

Figure 1: Three circles with centres A, B \& C and radii $a, b \& c$ respectively are touching each other externally. Inscribed circle P \& circumscribed circle \mathbf{Q} are touching these circles externally \& internally

In $\triangle A B C$

$$
\begin{gather*}
A B=a+b, B C=b+c \& A C=a+c \\
\Rightarrow \text { semiperimeter }=\frac{A B+B C+A C}{2} \\
s=\frac{a+b+b+c+a+c}{2}=a+b+c \\
\sin \frac{\angle A C B}{2}=\sqrt{\frac{(s-A C)(s-B C)}{(A C)(B C)}} \\
\Rightarrow \sin \frac{\alpha}{2}=\sqrt{\frac{(a+b+c-a-c)(a+b+c-b-c)}{(a+c)(b+c)}} \\
\sin \frac{\boldsymbol{\alpha}}{2}=\sqrt{\frac{\boldsymbol{a b}}{(\boldsymbol{a}+\boldsymbol{c})(\boldsymbol{b}+\boldsymbol{c})}} \tag{I}
\end{gather*}
$$

Figure 2: The centres $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{O}$ are joined to each other by dotted straight lines to obtain $\triangle A B C, \triangle A O B, \triangle B O C \& \triangle A O C$

Similarly, in $\triangle B O C$

$$
\text { semiperimeter }=\frac{O B+B C+O C}{2} \Rightarrow s=\frac{r+b+b+c+r+c}{2}=b+c+r
$$

$$
\begin{gather*}
\cos \frac{\angle B C O}{2}=\sqrt{\frac{s(s-O B)}{(B C)(O C)}} \Rightarrow \cos \frac{\alpha_{1}}{2}=\sqrt{\frac{(b+c+r)(b+c+r-r-b)}{(b+c)(r+c)}}=\sqrt{\frac{c(b+c+r)}{(b+c)(c+r)}} \\
\cos \frac{\boldsymbol{\alpha}_{\mathbf{1}}}{\mathbf{2}} \tag{II}\\
=\sqrt{\frac{\boldsymbol{c}(\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{r})}{(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{c}+\boldsymbol{r})}} \quad \ldots \ldots \ldots \ldots \ldots . . \ldots(\text { II })
\end{gather*}
$$

Similarly, in $\triangle A O C$

$$
\begin{align*}
& \text { semiperimeter }=\frac{O A+A C+O C}{2} \Rightarrow s=\frac{r+a+a+c+r+c}{2}=a+c+r \\
& \cos \frac{\angle A C O}{2}=\sqrt{\frac{s(s-O A)}{(A C)(O C)}} \Rightarrow \cos \frac{\alpha_{2}}{2}=\sqrt{\frac{(a+c+r)(a+c+r-r-a)}{(a+c)(r+c)}}=\sqrt{\frac{c(a+c+r)}{(a+c)(c+r)}} \\
& \cos \frac{\alpha_{2}}{2}=\sqrt{\frac{c(a+c+r)}{(a+c)(c+r)}} \tag{III}
\end{align*}
$$

Now, again in $\triangle A B C$, we have

$$
\angle A C O+\angle B C O=\angle A C B \Rightarrow \alpha_{2}+\alpha_{1}=\alpha \text { or } \frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}=\frac{\alpha}{2}
$$

Now, taking cosines of both the sides we have

$$
\begin{gathered}
\cos \left(\frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}\right)=\cos \frac{\alpha}{2} \Rightarrow \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}-\sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2}=\cos \frac{\alpha}{2} \\
\Rightarrow\left(\cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}-\sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2}\right)^{2}=\left(\cos \frac{\alpha}{2}\right)^{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+\sin ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha_{2}}{2}-2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}=\cos ^{2} \frac{\alpha}{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right)\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right)-\cos ^{2} \frac{\alpha}{2}=2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+1-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha}{2}=2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos ^{\frac{\alpha_{1}}{2}} \cos ^{\frac{\alpha_{2}}{2}} \\
\Rightarrow 2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\sin ^{2} \frac{\alpha}{2}=2 \cos \frac{\alpha_{1}}{2} \cos ^{\frac{\alpha_{2}}{2}} \sqrt{\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right.} \sqrt{\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right)} \\
\Rightarrow\left(2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\sin ^{2} \frac{\alpha}{2}\right)^{2}=4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right)\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right) \\
\Rightarrow 4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}-2 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-2 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \\
+\cos ^{4} \frac{\alpha_{1}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \\
+\cos ^{4} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}+2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2} \\
+\sin ^{4} \frac{\alpha}{2}=4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \cos ^{4} \frac{\alpha_{1}}{2}+\cos ^{4} \frac{\alpha_{2}}{2}+\sin ^{4} \frac{\alpha}{2}+4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2} \\
& -2 \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}=0 \\
& \Rightarrow \cos ^{4} \frac{\alpha_{1}}{2}+\cos ^{4} \frac{\alpha_{2}}{2}+\sin ^{4} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}\left(4 \sin ^{2} \frac{\alpha}{2}-2\right)-2 \sin ^{2} \frac{\alpha}{2}\left(\cos ^{2} \frac{\alpha_{1}}{2}+\cos ^{2} \frac{\alpha_{2}}{2}\right)=0
\end{aligned}
$$

Now, substituting all the corresponding values from eq(I), (II) \& (III) in above expression, we have

$$
\begin{gathered}
\left(\sqrt{\frac{c(b+c+r)}{(b+c)(c+r)}}\right)^{4}+\left(\sqrt{\frac{c(a+c+r)}{(a+c)(c+r)}}\right)^{4}+\left(\sqrt{\frac{a b}{(a+c)(b+c)}}\right)^{4} \\
+\left(\sqrt{\frac{c(b+c+r)}{(b+c)(c+r)}}\right)^{2}\left(\sqrt{\frac{c(a+c+r)}{(a+c)(c+r)}}\right)^{2}\left(4\left(\sqrt{\frac{a b}{(a+c)(b+c)}}\right)^{2}-2\right) \\
\quad-2\left(\sqrt{\frac{a b}{(a+c)(b+c)}}\right)^{2}\left\{\left(\sqrt{\frac{c(b+c+r)}{(b+c)(c+r)}}\right)^{2}+\left(\sqrt{\frac{c(a+c+r)}{(a+c)(c+r)}}\right)^{2}\right\}=0 \\
\begin{aligned}
\frac{c^{2}(b+c+r)^{2}}{(b+c)^{2}(c+r)^{2}}+\frac{c^{2}(a+c+r)^{2}}{(a+c)^{2}(c+r)^{2}}+\frac{a^{2} b^{2}}{(a+c)^{2}(b+c)^{2}}+\frac{c^{2}(a+c+r)(b+c+r)}{(a+c)(b+c)(c+r)^{2}}\left(\frac{2 a b c}{(a+c)(b+c)}-2\right) \\
\quad-\frac{2 a b+c)(b+r)}{(a+c)(b+c)(c+r)}\left\{\frac{(b+c+r)}{(b+c)}+\frac{(a+c+r)}{(a+c)}\right\}=0
\end{aligned}
\end{gathered}
$$

Now, on multiplying the above equation by $(a+c)^{2}(b+c)^{2}(c+r)^{2}$, we get

$$
\begin{aligned}
c^{2}(a+c)^{2}(b+ & c+r)^{2}+c^{2}(b+c)^{2}(a+c+r)^{2}+a^{2} b^{2}(c+r)^{2} \\
& +c^{2}(a+c+r)(b+c+r)\left(2 a b-2 b c-2 a c-2 c^{2}\right) \\
& -2 a b c(c+r)\{(a+c)(b+c+r)+(b+c)(a+c+r)\}=0
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow c^{2}(a+c)^{2}\left\{r^{2}+2(b+c) r+(b+c)^{2}\right\}+c^{2}(b+c)^{2}\left\{r^{2}+2(a+c) r+(a+c)^{2}\right\}+a^{2} b^{2}\left(r^{2}+2 c r+c^{2}\right) \\
\\
+c^{2}\left(2 a b-2 b c-2 a c-2 c^{2}\right)\left\{r^{2}+(a+b+2 c) r+(a+c)(b+c)\right\} \\
\\
-2 a b c(c+r)\{(a+b+2 c) r+2(a+c)(b+c)\}=0
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow\left\{c^{2}(a+c)^{2}+\right. & \left.c^{2}(b+c)^{2}+a^{2} b^{2}+2 c^{2}\left(a b-b c-a c-c^{2}\right)\right\} r^{2} \\
& +\left\{2 c^{2}(a+c)(b+c)(a+b+2 c)+2 a^{2} b^{2} c+2 c^{2}(a+b+2 c)\left(a b-b c-a c-c^{2}\right)\right\} r \\
& +2 c^{2}(a+c)^{2}(b+c)^{2}+a^{2} b^{2} c^{2}+2 c^{2}(a+c)(b+c)\left(a b-b c-a c-c^{2}\right) \\
& -2 a b c(a+b+2 c) r^{2}-2 a b c\{2(a+c)(b+c)+c(a+b+2 c)\} r-4 a b c^{2}(a+c)(b+c) \\
& =0 \\
\Rightarrow\left\{a^{2} c^{2}+c^{4}+\right. & 2 a c^{3}+b^{2} c^{2}+c^{4}+2 b c^{3}+a^{2} b^{2}+2 a b c^{2}-2 b c^{3}-2 a c^{3}-2 c^{4}-2 a^{2} b c-2 a b^{2} c \\
& \left.-4 a b c^{2}\right\} r^{2} \\
& +\left\{2 a^{2} b c^{2}+2 a^{2} c^{3}+2 b c^{4}+2 c^{5}+4 a b c^{3}+4 a c^{4}+2 a b^{2} c^{2}+2 b^{2} c^{3}+2 a c^{4}+2 c^{5}\right. \\
& +4 a b c^{3}+4 b c^{4}+2 a^{2} b^{2} c+2 a^{2} b c^{2}-2 a b c^{3}-2 a^{2} c^{3}-2 a c^{4}+2 a b^{2} c^{2}-2 b^{2} c^{3} \\
& \left.-2 a b c^{3}-2 b c^{4}+4 a b c^{3}-4 b c^{4}-4 a c^{4}-4 c^{5}-4 a^{2} b^{2} c-6 a b^{2} c^{2}-6 a^{2} b c^{2}-8 a b c^{3}\right\} r \\
& +\left\{a^{2} b^{2} c^{2}+4 a^{2} b^{2} c^{2}+4 a b^{2} c^{3}+4 a^{2} b c^{3}+4 a b c^{4}-4 a^{2} b^{2} c^{2}-4 a b^{2} c^{3}-4 a^{2} b c^{3}\right. \\
& \left.-4 a b c^{4}\right\}=0
\end{aligned}
$$

$$
\Rightarrow\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\} r^{2}-2 a b c(a b+b c+c a) r+a^{2} b^{2} c^{2}=0
$$

Now, solving the above quadratic equation for the values of r as follows

$$
\begin{gathered}
r=\frac{2 a b c(a b+b c+c a) \pm \sqrt{\{2 a b c(a b+b c+c a)\}^{2}-4\left\{a^{2} b^{2} c^{2}\right\}\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}}}{2\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}} \\
=\frac{2 a b c(a b+b c+c a) \pm 2 a b c \sqrt{4 a^{2} b c+4 a b^{2} c+4 a b c^{2}}}{2\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}}=\frac{a b c(a b+b c+c a) \pm a b c \sqrt{4 a b c(a+b+c)}}{(a b+b c+c a)^{2}-4 a b c(a+b+c)} \\
\Rightarrow r=a b c\left(\frac{(a b+b c+c a) \pm 2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-(2 \sqrt{a b c(a+b+c)})^{2}}\right)
\end{gathered}
$$

Case 1: Taking positive sign, we get

$$
\begin{gathered}
r=a b c\left(\frac{(a b+b c+c a)+2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-(2 \sqrt{a b c(a+b+c)})^{2}}\right)=a b c\left(\frac{1}{(a b+b c+c a)-2 \sqrt{a b c(a+b+c)}}\right) \\
\Rightarrow \boldsymbol{r}<\mathbf{0} \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0} \text { but } \boldsymbol{r}>\mathbf{0} \text { hence this value of radius } \boldsymbol{r} \text { is discarded }
\end{gathered}
$$

Case 2: Taking negative sign, we get

$$
\begin{gathered}
r=a b c\left(\frac{(a b+b c+c a)-2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-(2 \sqrt{a b c(a+b+c)})^{2}}\right)=a b c\left(\frac{1}{(a b+b c+c a)+2 \sqrt{a b c(a+b+c)}}\right) \\
\Rightarrow \boldsymbol{r}>\mathbf{0} \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0} \text { hence this value of radius } \boldsymbol{r} \text { is accepted }
\end{gathered}
$$

Hence, the radius (r) of inscribed circle is given as

$$
r=\frac{a b c}{2 \sqrt{a b c(a+b+c)}+(a b+b c+c a)} \quad(r>0 \quad \forall a, b, c>0)
$$

Above is the required expression to compute the radius (r) of the inscribed circle which externally touches three given circles with radii $\boldsymbol{a}, \boldsymbol{b}$ \& \boldsymbol{c} touching each other externally.
3. Derivation of the radius of circumscribed circle: Let R be the radius of circumscribed circle, with centre O , is internally touched by the given circles, having centres A, B \& C and radii $a, b \& c$, at the points $\mathrm{M}, \mathrm{N} \& \mathrm{P}$ respectively. Now join the centre O to the centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ by dotted straight lines to obtain $\triangle A O B, \triangle B O C \& \triangle A O C$ \& also join the centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ by dotted straight lines to obtain $\triangle A B C$ (As shown in the figure 3) Thus we have

$$
\begin{gathered}
A M=a, \quad B N=b, \quad C P=c \& \\
O M=O N=O P=R(\text { radius of circumscribed circle }) \\
O A=O M-A M=R-a, \quad O B=R-b \& O C=R-c
\end{gathered}
$$

In $\triangle A O B$

$$
\begin{gathered}
O A=R-a, A B=a+b \& O B=R-b \\
\text { semiperimeter }=\frac{O A+A B+O B}{2}
\end{gathered}
$$

Figure 3: The centres $A, B, C \& O$ are joined to each other by dotted straight lines to obtain $\triangle A B C, \triangle A O B, \triangle B O C \& \triangle A O C$

$$
\begin{gather*}
s=\frac{R-a+a+b+R-b}{2}=R \\
\sin \frac{\angle A O B}{2}=\sqrt{\frac{(s-O A)(s-O B)}{(O A)(O B)}}=\sqrt{\frac{(R-R+a)(R-R+b)}{(R-a)(R-b)}}=\sqrt{\frac{a b}{(R-a)(R-b)}} \text { let } \angle \boldsymbol{A O B} \boldsymbol{B}=\boldsymbol{\alpha} \\
\Rightarrow \sin \frac{\boldsymbol{\alpha}}{\mathbf{2}}=\sqrt{\frac{\boldsymbol{a b}}{(\boldsymbol{R}-\boldsymbol{a})(\boldsymbol{R}-\boldsymbol{b})}} \quad \cdots \ldots \ldots \ldots \ldots . . .(I) \tag{I}
\end{gather*}
$$

Similarly, in $\triangle B O C$

$$
\begin{array}{r}
\text { semiperimeter }=\frac{O B+B C+O C}{2} \\
s=\frac{R-b+b+c+R-c}{2}=R \\
\cos \frac{\angle B O C}{2}=\sqrt{\frac{s(s-B C)}{(O B)(O C)}} \Rightarrow \cos \frac{\boldsymbol{\alpha}_{1}}{2}=\sqrt{\frac{\boldsymbol{R}(\boldsymbol{R}-\boldsymbol{b}-\boldsymbol{c})}{(\boldsymbol{R}-\boldsymbol{b})(\boldsymbol{R}-\boldsymbol{c})}} \tag{II}
\end{array}
$$

Similarly, in $\triangle A O C$

$$
\begin{array}{r}
\text { semiperimeter }=\frac{O A+A C+O C}{2} \Rightarrow s=\frac{R-a+a+c+R-c}{2}=R \\
\cos \frac{\angle A O C}{2}=\sqrt{\frac{s(s-A C)}{(O A)(O C)}} \Rightarrow \cos \frac{\boldsymbol{\alpha}_{2}}{2}=\sqrt{\frac{\boldsymbol{R}(\boldsymbol{R}-\boldsymbol{a}-\boldsymbol{c})}{(\boldsymbol{R}-\boldsymbol{a})(\boldsymbol{R}-\boldsymbol{c})}} \quad \ldots \ldots \ldots \ldots . \tag{III}
\end{array}
$$

Now, again in $\triangle A O B$, we have

$$
\angle B O C+\angle A O C=\angle A O B \Rightarrow \alpha_{2}+\alpha_{1}=\alpha \text { or } \quad \frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}=\frac{\alpha}{2}
$$

Now, taking cosines of both the sides we have

$$
\begin{gathered}
\cos \left(\frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}\right)=\cos \frac{\alpha}{2} \Rightarrow \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}-\sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2}=\cos \frac{\alpha}{2} \\
\Rightarrow\left(\cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}-\sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2}\right)^{2}=\left(\cos \frac{\alpha}{2}\right)^{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+\sin ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha_{2}}{2}-2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2}=\cos ^{2} \frac{\alpha}{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right)\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right)-\cos ^{2} \frac{\alpha}{2}=2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2} \\
\Rightarrow \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}+1-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha}{2}=2 \sin \frac{\alpha_{1}}{2} \sin \frac{\alpha_{2}}{2} \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2} \\
\Rightarrow 2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\sin ^{2} \frac{\alpha}{2}=2 \cos \frac{\alpha_{1}}{2} \cos \frac{\alpha_{2}}{2} \sqrt{\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right)} \sqrt{\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right)}
\end{gathered}
$$

$$
\begin{array}{r}
\Rightarrow\left(2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}-\cos ^{2} \frac{\alpha_{1}}{2}+\sin ^{2} \frac{\alpha}{2}\right)^{2}=4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}\left(1-\cos ^{2} \frac{\alpha_{1}}{2}\right)\left(1-\cos ^{2} \frac{\alpha_{2}}{2}\right) \\
\Rightarrow 4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}-2 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-2 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \\
\\
+\cos ^{4} \frac{\alpha_{1}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2}-2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+\cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \\
\\
+\cos ^{4} \frac{\alpha_{2}}{2}-\cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}+2 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2} \\
\\
\\
+\sin ^{4} \frac{\alpha}{2}=4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2}+4 \cos ^{4} \frac{\alpha_{1}}{2} \cos ^{4} \frac{\alpha_{2}}{2} \\
\Rightarrow \cos ^{4} \frac{\alpha_{1}}{2}+\cos ^{4} \frac{\alpha_{2}}{2}+\sin ^{4} \frac{\alpha}{2}+4 \cos ^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2} \sin ^{2} \frac{\alpha}{2}-2 \operatorname{sos}^{2} \frac{\alpha_{1}}{2} \cos ^{2} \frac{\alpha_{2}}{2}-2 \operatorname{sos}^{2} \frac{\alpha_{1}}{2} \sin ^{2} \frac{\alpha}{2}
\end{array}
$$

Now, substituting all the corresponding values from eq(I), (II) \& (III) in above expression, we have

$$
\begin{gathered}
\left(\sqrt{\frac{R(R-b-c)}{(R-b)(R-c)}}\right)^{4}+\left(\sqrt{\frac{R(R-a-c)}{(R-a)(R-c)}}\right)^{4}+\left(\sqrt{\frac{a b}{(R-a)(R-b)}}\right)^{4} \\
+\left(\sqrt{\frac{R(R-b-c)}{(R-b)(R-c)}}\right)^{2}\left(\sqrt{\frac{R(R-a-c)}{(R-a)(R-c)}}\right)^{2}\left(4\left(\sqrt{\frac{a b}{(R-a)(R-b)}}\right)^{2}-2\right) \\
-2\left(\sqrt{\frac{a b}{(R-a)(R-b)}}\right)^{2}\left\{\left(\sqrt{\frac{R(R-b-c)}{(R-b)(R-c)}}\right)^{2}+\left(\sqrt{\frac{R(R-a-c)}{(R-a)(R-c)}}\right)^{2}\right\}=0 \\
\frac{R^{2}(R-b-c)^{2}}{(R-b)^{2}(R-c)^{2}}+\frac{R^{2}(R-a-c)^{2}}{(R-a)^{2}(R-c)^{2}}+\frac{a^{2} b^{2}}{(R-a)^{2}(R-b)^{2}} \\
+\frac{R^{2}(R-b-c)(R-a-c)}{(R-a)(R-b)(R-c)^{2}}\left(\frac{4 a b}{(R-a)(R-b)}-2\right) \\
\quad-\frac{2 a b R}{(R-a)(R-b)(R-c)}\left\{\frac{(R-b-c)}{(R-b)}+\frac{(R-a-c)}{(R-a)}\right\}=0
\end{gathered}
$$

Now, on multiplying the above equation by $(R-a)^{2}(R-b)^{2}(R-c)^{2}$, we get

$$
\begin{aligned}
& R^{2}(R-a)^{2}(R-b-c)^{2}+R^{2}(R-b)^{2}(R-a-c)^{2}+a^{2} b^{2}(R-c)^{2} \\
&+R^{2}(R-b-c)(R-a-c)\left\{2 a b-2 R^{2}+2(a+b) R\right\} \\
& \quad 2 a b R(R-c)\{(R-a)(R-b-c)+(R-b)(R-a-c)\}=0 \\
& \Rightarrow R^{2}(R-a)^{2}\left\{R^{2}-\right.\left.2(b+c) R+(b+c)^{2}\right\}+R^{2}(R-b)^{2}\left\{R^{2}-2(a+c) R+(a+c)^{2}\right\} \\
&+ a^{2} b^{2}\left(R^{2}-2 c R+c^{2}\right) \\
&+ R^{2}\left\{R^{2}-(a+b+2 c) R+(a+c)(b+c)\right\}\left\{2 a b-2 R^{2}+2(a+b) R\right\} \\
&- 2 a b R(R-c)\left\{2 R^{2}-2(a+b+c) R+a(b+c)+b(a+c)\right\}=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow\left\{R^{4}-2(b+c)\right. & \left.R^{3}+(b+c)^{2} R^{2}\right\}\left(R^{2}+a^{2}-2 a R\right)+\left\{R^{4}-2(a+c) R^{3}+(a+c)^{2} R^{2}\right\}\left(R^{2}+b^{2}-2 b R\right) \\
& +a^{2} b^{2} R^{2}-2 a^{2} b^{2} c R+a^{2} b^{2} c^{2} \\
& +\left\{R^{4}-(a+b+2 c) R^{3}+(a+c)(b+c) R^{2}\right\}\left\{2 a b-2 R^{2}+2(a+b) R\right\} \\
+ & \left(2 a b c R-2 a b R^{2}\right)\left\{2 R^{2}-2(a+b+c) R+a(b+c)+b(a+c)\right\}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow R^{6}-2(b+c) R^{5}+(b+c)^{2} R^{4}+a^{2} R^{4}-2 a^{2}(b+c) R^{3}+a^{2}(b+c)^{2} R^{2}-2 a R^{5}+4 a(b+c) R^{4} \\
&-2 a(b+c)^{2} R^{3}+R^{6}-2(a+c) R^{5}+(a+c)^{2} R^{4}+b^{2} R^{4}-2 b^{2}(a+c) R^{3} \\
&+b^{2}(a+c)^{2} R^{2}-2 b R^{5}+4 b(a+c) R^{4}-2 b(a+c)^{2} R^{3}+a^{2} b^{2} R^{2}-2 a^{2} b^{2} c R+a^{2} b^{2} c^{2} \\
&+2 a b R^{4}-2 a b(a+b+2 c) R^{3}+2 a b(a+c)(b+c) R^{2}-2 R^{6}+2(a+b+2 c) R^{5} \\
&-2(a+c)(b+c) R^{4}-4 a b c(a+b+c) R^{2}+4 a b(a+b+c) R^{3}+2 a b c(2 a b+a c+b c) R \\
&-2 a b(2 a b+a c+b c) R^{2}=0 \\
& \Rightarrow\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\} R^{2}+2 a b c(a b+b c+c a) R+a^{2} b^{2} c^{2}=0
\end{aligned}
$$

Now, solving the above quadratic equation for the values of R as follows

$$
\begin{aligned}
& R \\
& =\frac{-2 a b c(a b+b c+c a) \pm \sqrt{\{-2 a b c(a b+b c+c a)\}^{2}-4\left\{a^{2} b^{2} c^{2}\right\}\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}}}{2\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}} \\
& =\frac{-2 a b c(a b+b c+c a) \pm 2 a b c \sqrt{4 a^{2} b c+4 a b^{2} c+4 a b c^{2}}}{2\left\{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-2 a b c(a+b+c)\right\}}=\frac{-a b c(a b+b c+c a) \pm a b c \sqrt{4 a b c(a+b+c)}}{(a b+b c+c a)^{2}-4 a b c(a+b+c)} \\
& \Rightarrow R=a b c\left(\frac{-(a b+b c+c a) \pm 2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-(2 \sqrt{a b c(a+b+c)})^{2}}\right)
\end{aligned}
$$

Case 1: Taking positive sign, we get

$$
\begin{gathered}
R=a b c\left(\frac{-(a b+b c+c a)+2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-(2 \sqrt{a b c(a+b+c)})^{2}}\right)=-a b c\left(\frac{1}{(a b+b c+c a)+2 \sqrt{a b c(a+b+c)}}\right) \\
\Rightarrow \boldsymbol{R}<\mathbf{0} \forall a, b, \boldsymbol{c}>\mathbf{0} \text { but } \boldsymbol{R}>\mathbf{0} \text { hence this value of radius } \boldsymbol{R} \text { is discarded }
\end{gathered}
$$

Case 2: Taking negative sign, we get

$$
\left.\begin{array}{c}
R=a b c\left(\frac{-(a b+b c+c a)-2 \sqrt{a b c(a+b+c)}}{(a b+b c+c a)^{2}-}(2 \sqrt{a b c(a+b+c)})^{2}\right.
\end{array}\right)=-a b c\left(\frac{1}{(a b+b c+c a)-2 \sqrt{a b c(a+b+c)}}\right)
$$

$$
\Rightarrow R>0 \forall a, b, c>0 \text { hence this value of radius } R \text { is accepted }
$$

Hence, the radius (R) of circumscribed circle is given as

$$
R=\frac{a b c}{2 \sqrt{a b c(a+b+c)}-(a b+b c+c a)} \quad(R>0 \quad \forall a, b, c>0)
$$

Above is the required expression to compute the radius (\boldsymbol{R}) of the circumscribed circle which is internally touched by three given circles with radii a, b \& \boldsymbol{c} touching each other externally.

NOTE: The circumscribed circle will exist for three given radii $a, b \& c(a \geq b \geq c>0)$ if \& only if the following inequality is satisfied

Derivations of inscribed \& circumscribed radii for three externally touching circles

$$
c>\frac{a b}{(\sqrt{a}+\sqrt{b})^{2}}
$$

For any other value of radius c (of smallest circle) not satisfying the above inequality, the circumscribed circle will not exist i.e. there will be no circle which circumscribes \& internally touches three externally touching circles if the above inequality fails to hold good.

Special case: If three circles of equal radius a are touching each other externally then the radii $\boldsymbol{r} \& \boldsymbol{R}$ of inscribed \& circumscribed circles respectively are obtained by setting $a=b=c=a$ in the above expressions as follows

$$
\begin{aligned}
\Rightarrow \boldsymbol{r}= & \frac{a b c}{2 \sqrt{a b c(a+b+c)}+(a b+b c+c a)}=\frac{a^{3}}{2 \sqrt{a^{3}(a+a+a)}+\left(a^{2}+a^{2}+a^{2}\right)}=\frac{a^{3}}{2 \sqrt{3} a^{2}+3 a^{2}} \\
& =\frac{a}{2 \sqrt{3}+3}=\frac{a(2 \sqrt{3}-3)}{(2 \sqrt{3}+3)(2 \sqrt{3}-3)}=\frac{a(2 \sqrt{3}-3)}{3}=\boldsymbol{a}\left(\frac{\mathbf{2}}{\sqrt{3}}-\mathbf{1}\right) \approx \mathbf{0 . 1 5 4 7 0 0 5 3 8 a} \\
\Rightarrow \boldsymbol{R}= & \frac{a b c}{2 \sqrt{a b c(a+b+c)}-(a b+b c+c a)}=\frac{a^{3}}{2 \sqrt{a^{3}(a+a+a)}-\left(a^{2}+a^{2}+a^{2}\right)}=\frac{a^{3}}{2 \sqrt{3} a^{2}-3 a^{2}} \\
& =\frac{a}{2 \sqrt{3}-3}=\frac{a(2 \sqrt{3}+3)}{(2 \sqrt{3}-3)(2 \sqrt{3}+3)}=\frac{a(2 \sqrt{3}+3)}{3}=\boldsymbol{a}\left(\frac{\mathbf{2}}{\sqrt{3}}+\mathbf{1}\right) \approx \mathbf{2 . 1 5 4 7 0 0 5 3 8 a}
\end{aligned}
$$

4. Derivation of the radius of inscribed circle: Let r be the radius of inscribed circle, with centre C, externally touching two given externally touching circles, having centres $\mathrm{A} \& \mathrm{~B}$ and radii $a \& b$ respectively, and their common tangent MN. Now join the centres $A, B \& C$ to each other as well as to the points of tangency M, $N \& P$ respectively by dotted straight lines. Draw the perpendicular AT from the centre A to the line $B N$. Also draw a line passing through the centre C \& parallel to the tangent $M N$ which intersects the lines $A M$ \& $B N$ at the points $Q \& S$ respectively. (As shown in the figure 4) Thus we have

$$
A M=a, \quad B N=b, \quad C P=r=?
$$

In right $\triangle A T B$

$$
\begin{gather*}
A B=a+b \& B T=B N-T N=B N-A M=b-a \\
\Rightarrow A T=\sqrt{(A B)^{2}-(B T)^{2}} \\
=\sqrt{(a+b)^{2}-(b-a)^{2}}=\sqrt{4 a b}=2 \sqrt{a b} \\
\therefore \boldsymbol{A T}=\boldsymbol{Q S}=\boldsymbol{M N}=2 \sqrt{\boldsymbol{a b}} \ldots \ldots \ldots(I) \tag{I}
\end{gather*}
$$

In right $\triangle A Q C$
$A C=a+r \& A Q=A M-Q M=A M-C P=a-r$

Figure 4: A small circle with centre C is externally touching two given externally touching circles with centres A \& B and their common tangent MN

$$
\begin{gather*}
\Rightarrow Q C=\sqrt{(A C)^{2}-(A Q)^{2}} \\
=\sqrt{(a+r)^{2}-(a-r)^{2}}=\sqrt{4 a r}=2 \sqrt{a r} \therefore \boldsymbol{Q C}=\boldsymbol{M P}=2 \sqrt{\boldsymbol{a r}} \tag{II}
\end{gather*}
$$

In right $\triangle B S C$

$$
\begin{gather*}
B C=b+r \& B S=B N-S N=B N-C P=b-r \\
\Rightarrow C S=\sqrt{(B C)^{2}-(B S)^{2}}=\sqrt{(b+r)^{2}-(b-r)^{2}}=\sqrt{4 b r}=2 \sqrt{b r} \therefore \boldsymbol{C S}=\boldsymbol{P N}=\mathbf{2} \sqrt{\boldsymbol{b r}} \tag{III}
\end{gather*}
$$

\qquad
From the above figure 4, it is obvious that $\boldsymbol{M P}+\boldsymbol{P N}=\boldsymbol{M} \boldsymbol{N}$ now, substituting the corresponding values, we get

$$
\begin{gathered}
2 \sqrt{a r}+2 \sqrt{b r}=2 \sqrt{a b} \quad \Rightarrow \sqrt{r}(\sqrt{a}+\sqrt{b})=\sqrt{a b} \quad \Rightarrow \sqrt{r}=\frac{\sqrt{a b}}{(\sqrt{a}+\sqrt{b})} \\
\Rightarrow r=\left(\frac{\sqrt{a b}}{(\sqrt{a}+\sqrt{b})}\right)^{2}=\frac{a b}{a+b+2 \sqrt{a b}} \\
\therefore r=\frac{\boldsymbol{a b}}{\boldsymbol{a}+\boldsymbol{b}+\mathbf{2} \sqrt{\boldsymbol{a b}}}=\frac{\boldsymbol{a b}}{(\sqrt{\boldsymbol{a}}+\sqrt{\boldsymbol{b}})^{2}} \quad(\boldsymbol{r}>\mathbf{0} \forall \boldsymbol{a}, \boldsymbol{b}>\mathbf{0})
\end{gathered}
$$

Above is the required expression to compute the radius (\boldsymbol{r}) of the inscribed circle which externally touches two given circles with radii $\boldsymbol{a} \& \boldsymbol{b}$ \& their common tangent.

Special case: If two circles of equal radius a are touching each other externally then the radius r of inscribed circle externally touching them as well as their common tangent, is obtained by setting $a=b=a$ in the above expressions as follows

$$
r=\frac{a b}{a+b+2 \sqrt{a b}}=\frac{a^{2}}{a+a+2 \sqrt{a^{2}}}=\frac{a^{2}}{4 a}=\frac{a}{4} \Rightarrow \boldsymbol{r}=\frac{\boldsymbol{a}}{\mathbf{4}}
$$

5. Relationship of the radii of three externally touching circles enclosed in a smallest rectangle:

Consider any three externally touching circles with the centres $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ and their radii $a, b \& c(\forall a>b \geq c)$ respectively enclosed in a smallest rectangle PQRS. (See the figure 5)

Now, draw the perpendiculars AD, AF \& AH from the centre A of the biggest circle to the sides $P Q$, $R S$ \& $Q R$ respectively. Also draw the perpendiculars CE \& CM from the centre C to the straight lines $P Q \& D F$ respectively and the perpendiculars $B G \& B N$ from the centre B to the straight lines RS \& DF respectively. Then join the centres $A, B \& C$ to each other by the (dotted) straight lines to obtain $\triangle A B C$. Now, we have
$A D=A F=a, B G=b \& C E=c \quad(\forall b, c<a)$

Figure 5: Three externally touching circles with their centres $A, B \& C$ and radii $\boldsymbol{a}, \boldsymbol{b} \& \boldsymbol{c}(\forall \boldsymbol{a}>\boldsymbol{b} \geq \boldsymbol{c})$ respectively are enclosed in a smallest rectangle PQRS.

Now, applying cosine rule in right $\triangle A B C$

$$
\begin{gather*}
\cos \angle B A C=\frac{(A B)^{2}+(A C)^{2}-(B C)^{2}}{2(A B)(A C)} \Rightarrow \cos \alpha=\frac{(a+b)^{2}+(a+c)^{2}-(b+c)^{2}}{2(a+b)(a+c)} \\
\cos \alpha=\frac{a^{2}+b^{2}+2 a b+a^{2}+c^{2}+2 a c-b^{2}-c^{2}-2 b c}{2(a+b)(a+c)}=\frac{a^{2}+a b+a c-b c}{(a+b)(a+c)}=\frac{a(a+b)+c(a-b)}{(a+b)(a+c)} \\
\cos \boldsymbol{\alpha}=\frac{\boldsymbol{a}(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}(\boldsymbol{a}-\boldsymbol{b})}{(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{c})} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots(I) \\
\Rightarrow \sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\left(\frac{a(a+b)+c(a-b))^{2}}{(a+b)(a+c)}\right)^{2}} \\
=\frac{\sqrt{a^{2}(a+b)^{2}+c^{2}(a+b)^{2}+2 a c(a+b)^{2}-a^{2}(a+b)^{2}-c^{2}(a-b)^{2}-2 a c\left(a^{2}-b^{2}\right)}}{(a+b)(a+c)} \\
\sin \boldsymbol{\alpha}=\frac{\sqrt{4 \boldsymbol{a b c} \boldsymbol{c}^{2}+\mathbf{4 a b c}(\boldsymbol{a}+\boldsymbol{b})}}{(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{c})} \tag{II}
\end{gather*}
$$

In right $\triangle A N B$

$$
\begin{gather*}
\sin \angle A B N=\frac{A N}{A B}=\frac{A F-N F}{A B}=\frac{A F-B G}{A B} \\
\Rightarrow \sin \boldsymbol{\theta}=\frac{\boldsymbol{a}-\boldsymbol{b}}{\boldsymbol{a}+\boldsymbol{b}} \quad \ldots \ldots \ldots \ldots \ldots \ldots(I I I) \\
\cos \angle A B N=\frac{B N}{A B}=\frac{\sqrt{(A B)^{2}-(A N)^{2}}}{A B}=\frac{\sqrt{(a+b)^{2}-(a-b)^{2}}}{a+b}=\frac{\sqrt{4 a b}}{a+b} \\
\Rightarrow \cos \boldsymbol{\theta}=\frac{\mathbf{2} \sqrt{\boldsymbol{a b}}}{\boldsymbol{a}+\boldsymbol{b}} \quad \ldots \ldots \ldots \ldots \ldots(I V) \tag{IV}
\end{gather*}
$$

In right $\triangle A M C$

$$
\begin{aligned}
& \sin \angle A C M=\frac{A M}{A C}=\frac{A D-M D}{A C}=\frac{A D-C E}{A C} \Rightarrow \sin (\alpha-\theta)=\frac{a-c}{a+c} \\
\Rightarrow & (a+c) \sin (\alpha-\theta)=a-c \text { or }(a+c)(\sin \alpha \cos \theta-\cos \alpha \sin \theta)=a-c
\end{aligned}
$$

Now, by substituting the corresponding values from the eq(I), (II), (III) \& (IV) in the above expression, we get

$$
\begin{aligned}
& (a+c)\left(\frac{\sqrt{4 a b c^{2}+4 a b c(a+b)}}{(a+b)(a+c)} \times \frac{2 \sqrt{a b}}{a+b}-\frac{a(a+b)+c(a-b)}{(a+b)(a+c)} \times \frac{a-b}{a+b}\right)=a-c \\
& \Rightarrow(a+c)\left(\frac{4 a b \sqrt{c^{2}+c(a+b)}}{(a+b)^{2}(a+c)}-\frac{a(a+b)(a-b)+c(a-b)^{2}}{(a+b)^{2}(a+c)}\right)=a-c \\
& \Rightarrow 4 a b \sqrt{c^{2}+c(a+b)}-a\left(a^{2}-b^{2}\right)-c(a-b)^{2}=(a-c)(a+b)^{2} \\
& \Rightarrow 4 a b \sqrt{c^{2}+c(a+b)}=a(a+b)^{2}-c(a+b)^{2}+a\left(a^{2}-b^{2}\right)+c(a-b)^{2} \\
& \Rightarrow 4 a b \sqrt{c^{2}+c(a+b)}=a\left\{(a+b)^{2}+a^{2}-b^{2}\right\}-c\left\{(a+b)^{2}-(a-b)^{2}\right\}
\end{aligned}
$$

Derivations of inscribed \& circumscribed radii for three externally touching circles

$$
\begin{gathered}
\Rightarrow 4 a b \sqrt{c^{2}+c(a+b)}=a\left(2 a^{2}+2 a b\right)-c(4 a b) \\
\Rightarrow 2 b \sqrt{c^{2}+c(a+b)}=a(a+b)-2 b c
\end{gathered}
$$

Now, taking the square on both the sides, we get

$$
\begin{gathered}
\left(2 b \sqrt{c^{2}+c(a+b)}\right)^{2}=(a(a+b)-2 b c)^{2} \\
\Rightarrow 4 b^{2}\left(c^{2}+c(a+b)\right)=a^{2}(a+b)^{2}+4 b^{2} c^{2}-4 a b c(a+b) \\
\Rightarrow 4 b^{2} c^{2}+4 b^{2} c(a+b)=a^{2}(a+b)^{2}+4 b^{2} c^{2}-4 a b c(a+b) \\
\Rightarrow 4 b^{2} c(a+b)+4 a b c(a+b)=a^{2}(a+b)^{2} \\
\Rightarrow \quad 4 b c(a+b)(b+a)=a^{2}(a+b)^{2} \quad \text { or } 4 b c(a+b)^{2}=a^{2}(a+b)^{2} \Rightarrow 4 b c=a^{2} \\
\Rightarrow \boldsymbol{a}^{2}=\mathbf{4 b c} \text { or } \boldsymbol{a}=\mathbf{2} \sqrt{\boldsymbol{b c}} \quad \forall \boldsymbol{a}>\boldsymbol{b} \geq \boldsymbol{c}
\end{gathered}
$$

Above relation is very important for computing any of the radii $\boldsymbol{a}, \boldsymbol{b}$ \& \boldsymbol{c} if other two are known for three externally touching circles enclosed in a smallest rectangle.

Dimensions of the smallest enclosing rectangle: The length $L \&$ width B of the smallest rectangle PQRS enclosing three externally circles touching circles are calculated as follows (see the figure 5 above)

$$
\begin{gathered}
\text { Length, } L=P Q=R S=S F+F G+G R=a+2 \sqrt{a b}+b=a+b+2 \sqrt{a b}=(\sqrt{a}+\sqrt{b})^{2} \\
\text { Width, } B=P S=Q R=D M=2 a
\end{gathered}
$$

$$
\therefore \text { Length, } L=(\sqrt{a}+\sqrt{b})^{2} \quad \& \text { Width, } B=2 a \quad \forall a^{2}=4 b c \quad \& \quad a>b \geq c
$$

Thus, above expressions can be used to compute the dimensions of the smallest rectangle enclosing three externally touching circles having radii $a, b \& c(a>b \geq c)$.
6. Length of common chord of two intersecting circles: Consider two circles with centres $O_{1} \& O_{2}$ and radii $r_{1} \& r_{2}$ respectively, at a distance d between their centres, intersecting each other at the points $\mathrm{A} \& \mathrm{~B}$ (As shown in the figure 6). Join the centres $O_{1} \& O_{2}$ to the point A. The line $\mathrm{O}_{1} \mathrm{O}_{2}$ bisects the common chord AB perpendicularly at the point M . Let $A M=x$ then the length of common chord $A B=2 x$. Now

In right triangle $\triangle A M O_{1}$,

$$
O_{1} M=\sqrt{\left(O_{1} A\right)^{2}-(A M)^{2}}=\sqrt{r_{1}^{2}-x^{2}}
$$

Similarly, In right triangle $\triangle A M O_{2}$,

$$
M O_{2}=\sqrt{\left(O_{2} A\right)^{2}-(A M)^{2}}=\sqrt{r_{2}^{2}-x^{2}}
$$

Now,

$$
O_{1} O_{2}=O_{1} M+M O_{2}
$$

Figure 6: Two circles with the centres $O_{1} \& O_{2}$ and radii $r_{1} \& r_{2}$ respectively at a distance d between their centres, intersecting each other at the points A \& B

Derivations of inscribed \& circumscribed radii for three externally touching circles

Substituting the corresponding values, we get

$$
d=\sqrt{r_{1}^{2}-x^{2}}+\sqrt{r_{2}^{2}-x^{2}}
$$

Taking squares on both the sides,

$$
\begin{aligned}
& d^{2}=\left(\sqrt{r_{1}{ }^{2}-x^{2}}+\sqrt{r_{2}{ }^{2}-x^{2}}\right)^{2} \\
& r_{1}{ }^{2}-x^{2}+r_{2}{ }^{2}-x^{2}+2 \sqrt{\left(r_{1}^{2}-x^{2}\right)\left(r_{2}{ }^{2}-x^{2}\right)}=d^{2} \\
& 2 \sqrt{\left(r_{1}{ }^{2}-x^{2}\right)\left(r_{2}{ }^{2}-x^{2}\right)}=2 x^{2}+d^{2}-r_{1}{ }^{2}-r_{2}{ }^{2} \\
& 4\left(r_{1}{ }^{2}-x^{2}\right)\left(r_{2}{ }^{2}-x^{2}\right)=\left(2 x^{2}+d^{2}-r_{1}{ }^{2}-r_{2}{ }^{2}\right)^{2} \\
& 4 r_{1}^{2} r_{2}^{2}-4\left(r_{1}{ }^{2}+r_{2}^{2}\right) x^{2}+4 x^{4}=4 x^{4}+\left(d^{2}-r_{1}{ }^{2}-r_{2}^{2}\right)^{2}+4\left(d^{2}-r_{1}{ }^{2}-r_{2}{ }^{2}\right) x^{2} \\
& 4 d^{2} x^{2}=4 r_{1}^{2} r_{2}{ }^{2}-\left(d^{2}-r_{1}^{2}-r_{2}^{2}\right)^{2} \\
& 4 x^{2}=\frac{\left(2 r_{1} r_{2}\right)^{2}-\left(d^{2}-r_{1}{ }^{2}-r_{2}{ }^{2}\right)^{2}}{d^{2}} \\
& 4 x^{2}=\frac{\left(2 r_{1} r_{2}+d^{2}-r_{1}^{2}-r_{2}^{2}\right)\left(2 r_{1} r_{2}-d^{2}+r_{1}^{2}+r_{2}^{2}\right)}{d^{2}} \\
& 4 x^{2}=\frac{\left(d^{2}-\left(r_{1}-r_{2}\right)^{2}\right)\left(\left(r_{1}+r_{2}\right)^{2}-d^{2}\right)}{d^{2}} \\
& 2 x=\sqrt{\frac{\left(d^{2}-\left(r_{1}-r_{2}\right)^{2}\right)\left(\left(r_{1}+r_{2}\right)^{2}-d^{2}\right)}{d^{2}}} \\
& \Rightarrow A B=\frac{\sqrt{\left(d^{2}-\left(r_{1}-r_{2}\right)^{2}\right)\left(\left(r_{1}+r_{2}\right)^{2}-d^{2}\right)}}{d}
\end{aligned}
$$

Hence, the length of the common chord of two intersecting circles with radii $r_{1} \& r_{2}$ at a distance d between their centres is

Length of common chord, $\mathrm{L}=\frac{\sqrt{\left\{d^{2}-\left(r_{1}-r_{2}\right)^{2}\right\}\left\{\left(r_{1}+r_{2}\right)^{2}-d^{2}\right\}}}{d} \quad \forall\left|r_{1}-r_{2}\right| \leq d \leq r_{1}+r_{2}$
Special case: If $r_{1} \neq r_{2}$ then the maximum length of common chord of two intersecting circles
$=2 \times \min \left(r_{1}, r_{2}\right)=$ diameter of smaller circle at a central distance $\boldsymbol{d}=\sqrt{\left|\boldsymbol{r}_{\mathbf{1}}{ }^{2}-\boldsymbol{r}_{\mathbf{2}}{ }^{2}\right|}$
Angles of intersection of two intersecting circles: Let $\angle A O_{1} M=\theta_{1} \& \angle A O_{2} M=\theta_{2}$ (See above fig 6).
In right $\triangle A M O_{1}$, we have
$\sin \angle A O_{1} M=\frac{A M}{A O_{1}} \Rightarrow \sin \theta_{1}=\frac{L / 2}{r_{1}}=\frac{L}{2 r_{1}}$
$\Rightarrow \theta_{1}=\sin ^{-1}\left(\frac{L}{2 r_{1}}\right)=$ semi aperture angle subtended by common chord $A B$ at centre 0_{1}
Similarly, in right $\triangle A M O_{2}$,
$\angle A O_{2} M=\theta_{2}=\sin ^{-1}\left(\frac{L}{2 r_{2}}\right)=$ semi aperture angle subtended by common chord AB at centre O_{2}
Now, it can be easily proved that one of the two supplementary angles of intersection (θ) is given as the sum of above two semi-aperture angles θ_{1} and θ_{2} subtended by common chord AB at the centres $O_{1} \& O_{2}$ of two intersecting circles (see above fig. 6)

$$
\theta=\theta_{1}+\theta_{2}=\sin ^{-1}\left(\frac{L}{2 r_{1}}\right)+\sin ^{-1}\left(\frac{L}{2 r_{2}}\right)
$$

Hence, both the supplementary angles of intersection of two intersecting circles are given as follows

$$
\theta=\sin ^{-1}\left(\frac{L}{2 r_{1}}\right)+\sin ^{-1}\left(\frac{L}{2 r_{2}}\right) \& \pi-\theta
$$

$$
\text { Where, } L=\frac{\sqrt{\left\{d^{2}-\left(r_{1}-r_{2}\right)^{2}\right\}\left\{\left(r_{1}+r_{2}\right)^{2}-d^{2}\right\}}}{d} \quad \forall\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right| \leq \boldsymbol{d} \leq \boldsymbol{r}_{\mathbf{1}}+\boldsymbol{r}_{2}
$$

Area of intersection (A) of two intersecting circles: As we have computed above, $2 \theta_{1}$ is the angle of aperture subtended by common chord AB at the centre O_{1} of circle with a radius r_{1} hence the area $\left(A_{1}\right)$ of segment of corresponding circle is give as (Refer to fig. 6 above)

$$
\begin{aligned}
A_{1} & =\text { Area of sector } \mathrm{O}_{1} \mathrm{AB}-\text { area of isosceles } \Delta \mathrm{O}_{1} \mathrm{AB} \\
& =\frac{1}{2}\left(2 \theta_{1}\right) r_{1}{ }^{2}-\frac{1}{2}\left(r_{1} \times r_{1}\right) \sin 2 \theta_{1} \\
& =\frac{1}{2}\left(2 \theta_{1}-\sin 2 \theta_{1}\right) r_{1}^{2} \\
& =\frac{1}{2}\left(2 \theta_{1}-2 \sin \theta_{1} \cos \theta_{1}\right) r_{1}^{2} \\
& =\left(\theta_{1}-\sin \theta_{1} \cos \theta_{1}\right) r_{1}^{2}
\end{aligned}
$$

Similarly, the area $\left(A_{2}\right)$ of segment of circle with a radius r_{2} \& aperture angle $2 \theta_{2}$ subtended by common chord AB at the centre O_{2}, is given as follows

$$
A_{2}=\left(\theta_{2}-\sin \theta_{2} \cos \theta_{2}\right) r_{2}^{2}
$$

Now, the area of intersection (A) of two intersecting circles will be equal to the sum of areas $A_{1} \& A_{2}$ of segments as computed above

$$
A=A_{1}+A_{2}=\left(\theta_{1}-\sin \theta_{1} \cos \theta_{1}\right) r_{1}^{2}+\left(\theta_{2}-\sin \theta_{2} \cos \theta_{2}\right) r_{2}^{2}
$$

Hence, the area (A) of intersection of any two intersecting circles of radii $r_{1} \& r_{2}$ separated by a central distance \boldsymbol{d} is given as

$$
A=\left(\theta_{1}-\sin \theta_{1} \cos \theta_{1}\right) r_{1}^{2}+\left(\theta_{2}-\sin \theta_{2} \cos \theta_{2}\right) r_{2}^{2}
$$

Where, $\theta_{1}=\sin ^{-1}\left(\frac{L}{2 r_{1}}\right), \quad \theta_{2}=\sin ^{-1}\left(\frac{L}{2 r_{2}}\right) \& L=\frac{\sqrt{\left\{d^{2}-\left(r_{1}-r_{2}\right)^{2}\right\}\left\{\left(r_{1}+r_{2}\right)^{2}-d^{2}\right\}}}{d}$

$$
\forall\left|r_{1}-r_{2}\right| \leq d \leq r_{1}+r_{2}
$$

Conclusion: All the articles above have been derived by using simple geometry \& trigonometry. All above articles (formula) are very practical \& simple to apply in case studies \& practical applications of 2-D Geometry. Although above results are also valid in case of three spheres touching one another externally in 3-D geometry.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

Feb, 2015
Email:rajpootharishchandra@gmail.com

Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

