Mathematical analysis of uniform polyhedra with 2 regular n-gonal \& $2 n$ trapezoidal faces
 (Generalized formula for uniform polyhedra with regular polygonal \& trapezoidal faces)

Mathematical Analysis of Uniform Polyhedra

Mr Harish Chandra Rajpoot

M.M.M. University of Technology, Gorakhpur-273010 (UP), India

March, 2015
Introduction: Here, we are to analyse a uniform polyhedron having $\mathbf{2}$ congruent regular \mathbf{n}-gonal faces, $\mathbf{2 n}$ congruent trapezoidal faces, $5 n$ edges $\& 3 n$ vertices lying on a spherical surface with a certain radius. Each of $2 n$ trapezoidal faces has three equal sides, two equal acute angles each $\boldsymbol{\alpha}$ \& two equal obtuse angles each $\boldsymbol{\beta}$. (See the figure 1 showing a uniform tetradecahedron). The condition, of all $3 n$ vertices lying on a spherical surface, governs \& correlates all the parameters of a uniform polyhedron such as solid angle subtended by each face at the centre, normal distance of each face from the centre, outer (circumscribed) radius, inner (inscribed) radius, mean radius, surface area, volume etc. If the length of one of two unequal edges is known then all the dimensions of a uniform polyhedron can be easily determined. It is to noted that if the edge length of regular n-gonal face is known then the analysis becomes very easy. We would derive a mathematical relation of the side length a of regular n-gonal faces $\&$ the radius R of the spherical surface passing through all $3 n$ vertices. Thus, all the dimensions of a uniform polyhedron can be easily determined only in terms of edge length a \& plane

Figure 1: A uniform tetradecahedron has 2 congruent regular hexagonal faces each of edge length $a \& 12$ congruent trapezoidal faces. All its 18 vertices eventually \& exactly lie on a spherical surface with a certain radius.

Figure 2: $A B C D$ is one of 2 n congruent trapezoidal faces with $A D=B C=C D=a . \quad \triangle C E D \& \triangle A O B$ are isosceles triangles. ADEO \& OEMN are trapeziums.

$$
E C=E D \& C D=a \& O A=O B=R_{o}
$$

In right $\triangle E M D$

$$
\begin{gathered}
\sin \angle D E M=\frac{D M}{E D} \Rightarrow \sin \frac{\pi}{n}=\frac{\left(\frac{a}{2}\right)}{E D} \Rightarrow \boldsymbol{E D}=\frac{\boldsymbol{a}}{\mathbf{2}} \boldsymbol{\operatorname { c o s e c }} \frac{\boldsymbol{\pi}}{\boldsymbol{n}}=\boldsymbol{E C}=\boldsymbol{O} \boldsymbol{F} \\
\tan \angle D E M=\frac{D M}{E M} \Rightarrow \tan \frac{\pi}{n}=\frac{\left(\frac{a}{2}\right)}{E M} \Rightarrow \boldsymbol{E M}=\frac{\boldsymbol{a}}{\mathbf{2}} \boldsymbol{\operatorname { c o t }} \frac{\boldsymbol{\pi}}{\boldsymbol{n}}=\boldsymbol{O} \boldsymbol{H}
\end{gathered}
$$

In right $\triangle A N O$ (figure 2)

$$
\begin{aligned}
& \sin \angle A O N=\frac{A N}{O A} \Rightarrow \sin \frac{\pi}{n}=\frac{A N}{R_{O}} \Rightarrow A N=\boldsymbol{R}_{\boldsymbol{o}} \sin \frac{\pi}{n}=N B \\
& \cos \angle A O N=\frac{O N}{O A} \Rightarrow \cos \frac{\pi}{n}=\frac{O N}{R_{o}} \Rightarrow O N=\boldsymbol{R}_{o} \cos \frac{\pi}{n}
\end{aligned}
$$

In right $\triangle O E D$ (figure 3)

$$
\begin{aligned}
& E O=\sqrt{(O D)^{2}-(D E)^{2}}=\sqrt{R_{o}^{2}-\left(\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}\right)^{2}} \\
& \Rightarrow \boldsymbol{E O}=\boldsymbol{D} \boldsymbol{F}=\boldsymbol{M} \boldsymbol{H}=\frac{\mathbf{1}}{\mathbf{2}} \sqrt{\mathbf{4 R}_{\boldsymbol{o}}{ }^{2}-\boldsymbol{a}^{2} \operatorname{cosec}^{2} \frac{\pi}{n}}
\end{aligned}
$$

In right $\triangle A F D$ (figure 3)
$\Rightarrow(A D)^{2}=(A F)^{2}+(D F)^{2}=(O A-O F)^{2}+(D F)^{2}$

$$
\Rightarrow a^{2}=\left(R_{o}-\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}\right)^{2}+\left(\frac{1}{2} \sqrt{4 R_{o}^{2}-a^{2} \operatorname{cosec}^{2} \frac{\pi}{n}}\right)^{2}
$$

Figure 3: Trapezium ADEO with $A D=a, O A=O D=R_{o}$ \& $D F=E O$. The lines DE \& AO are parallel.

Figure 4: Trapezium OEMN with $\boldsymbol{E M}=\boldsymbol{O H} \& E O=\boldsymbol{M H}$. The lines ME \& NO are parallel.

But, $\boldsymbol{R}_{\boldsymbol{o}}>\boldsymbol{a}>\mathbf{0}$ by taking positive sign, we get

$$
\begin{equation*}
\therefore \quad R_{o}=\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \tag{I}
\end{equation*}
$$

Now, draw a perpendicular OG from the centre O to the trapezoidal face ABCD , perpendicular MH from the mid-point M of the side CD to the line ON. Thus in trapezium OEMN (See the figure 4), we have

$$
\begin{aligned}
& M H=E O=\frac{1}{2} \sqrt{4 R_{o}{ }^{2}-a^{2} \operatorname{cosec}^{2} \frac{\pi}{n}}=\sqrt{\left(\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)\right)^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}} \\
& =a \sqrt{\frac{1}{16} \operatorname{cosec}^{2} \frac{\pi}{n}+\frac{1}{16}\left(8+\operatorname{cosec}^{2} \frac{\pi}{n}\right)+\frac{1}{8}\left(\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)-\frac{1}{4} \operatorname{cosec}^{2} \frac{\pi}{n}} \\
& =a \sqrt{\frac{1}{16} \operatorname{cosec}^{2} \frac{\pi}{n}+\frac{1}{2}+\frac{1}{16} \operatorname{cosec}^{2} \frac{\pi}{n}+\frac{1}{8} \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\frac{1}{4} \operatorname{cosec}^{2} \frac{\pi}{n}} \\
& =a \sqrt{\frac{1}{2}+\frac{1}{8} \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\frac{1}{8} \operatorname{cosec}^{2} \frac{\pi}{n}}=a \sqrt{\frac{4+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\operatorname{cosec}^{2} \frac{\pi}{n}}{8}} \\
& \therefore M H=E O=\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}} \\
& \boldsymbol{N H}=O N-O H=O N-E M=R_{o} \cos \frac{\pi}{n}-\frac{a}{2} \cot \frac{\pi}{n} \quad(\text { See figure } 2 \& 4) \\
& =\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \cos \frac{\pi}{n}-\frac{a}{2} \cot \frac{\pi}{n} \quad\left(\text { setting the value of } R_{o}\right. \text { from eq(I)) } \\
& =\frac{a}{4}\left(\cot \frac{\pi}{n}+\cos \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)-\frac{a}{2} \cot \frac{\pi}{n}=\frac{a}{4} \cos \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\frac{a}{4} \cot \frac{\pi}{n} \\
& =\frac{a}{4}\left(\cos \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\cot \frac{\pi}{n}\right)
\end{aligned}
$$

In right $\triangle M H N$ (figure 4)

$$
\begin{gathered}
M N=\sqrt{(M H)^{2}+(N H)^{2}}=\sqrt{(E O)^{2}+(N H)^{2}} \\
=\sqrt{\left(\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right)^{2}+\left(\frac{a}{4}\left(\cos \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}-\cot \frac{\pi}{n}\right)\right)^{2}} \\
=a \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{8}+\frac{1}{16}\left(\cos ^{2} \frac{\pi}{n}\left(8+\operatorname{cosec}^{2} \frac{\pi}{n}\right)+\cot ^{2} \frac{\pi}{n}-2 \cos \frac{\pi}{n} \cot \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)} \\
=\frac{a}{4} \sqrt{8-2 \operatorname{cosec}^{2} \frac{\pi}{n}+2 \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}+8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}-2 \cos ^{2} \frac{\pi}{n} \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}} \\
=\frac{a}{4} \sqrt{8-2-2 \cot ^{2} \frac{\pi}{n}+8 \cos ^{2} \frac{\pi}{n}+2 \cot ^{2} \frac{\pi}{n}+2\left(1-\cos ^{2} \frac{\pi}{n}\right) \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}
\end{gathered}
$$

$$
\begin{gather*}
=\frac{a}{4} \sqrt{6+8 \cos ^{2} \frac{\pi}{n}+2 \sin ^{2} \frac{\pi}{n} \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}=\frac{a}{4} \sqrt{6+8 \cos ^{2} \frac{\pi}{n}+2 \sqrt{8 \sin ^{2} \frac{\pi}{n}+1}} \\
=\frac{a}{4} \sqrt{6+8 \cos ^{2} \frac{\pi}{n}+2 \sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}=\frac{a}{2} \sqrt{\frac{6+8 \cos ^{2} \frac{\pi}{n}+2 \sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{4}} \\
\therefore \quad M \boldsymbol{N}=\frac{\boldsymbol{a}}{\mathbf{2} \sqrt{\frac{\mathbf{3 + 4 \operatorname { c o s } ^ { 2 } \frac { \boldsymbol { \pi } } { \boldsymbol { n } } + \sqrt { \mathbf { 9 - 8 } \operatorname { c o s } ^ { 2 } \frac { \boldsymbol { \pi } } { \boldsymbol { n } } }}}{\mathbf{2}}}} \tag{III}
\end{gather*}
$$

Now, area of $\triangle O M N$ can be calculated as follows (from figure 4)

$$
\begin{aligned}
& \text { area of } \triangle O M N=\frac{1}{2}[(M N) \times(O G)]=\frac{1}{2}[(O N) \times(M H)] \Rightarrow(M N) \times(O G)=(O N) \times(M H) \\
& \Rightarrow O G=\frac{(O N) \times(M H)}{M N}=\frac{\left(R_{o} \cos \frac{\pi}{n}\right) \times\left(\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right)}{\left(\frac{a}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right)} \\
& =\frac{\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \cos \frac{\pi}{n} \sqrt{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}{\sqrt{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \\
& =\frac{\frac{a}{4} \cos \frac{\pi}{n} \sqrt{\left(4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)^{2}}}{\sqrt{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \\
& =\frac{\frac{a}{4} \cos \frac{\pi}{n} \sqrt{32+16 \operatorname{cosec}^{2} \frac{\pi}{n}+16 \operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}{\sqrt{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \\
& =\operatorname{acos} \frac{\pi}{n} \sqrt{\frac{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}}=a \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}}
\end{aligned}
$$

$$
\begin{equation*}
\therefore O G=a \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \tag{IV}
\end{equation*}
$$

Normal distance $\left(H_{n-g o n}\right)$ of regular n-gonal faces from the centre of uniform polyhedron: The normal distance $\left(H_{n-g o n}\right)$ of each of 2 congruent regular n-gonal faces from the centre O of a uniform polyhedron is given as

$$
\begin{aligned}
& H_{n-g o n}=E O=\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}} \quad(\text { from the eq(II) above) } \\
& \therefore H_{n-g o n}=\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}} \quad \forall \boldsymbol{n} \in N \& \boldsymbol{n} \geq \mathbf{3}
\end{aligned}
$$

It's clear that both the congruent regular n-gonal faces are at an equal normal distance $\boldsymbol{H}_{\boldsymbol{n - g}}$ from the centre of a uniform polyhedron.

Solid angle $\left(\omega_{n-g o n}\right)$ subtended by each of 2 congruent regular n-gonal faces at the centre of uniform polyhedron: We know that the solid angle (ω) subtended by any regular polygon with each side of length a at any point lying at a distance H on the vertical axis passing through the centre of plane is given by "HCR's Theory of Polygon" as follows

$$
\omega=2 \pi-2 n \sin ^{-1}\left(\frac{2 H \sin \frac{\pi}{n}}{\sqrt{4 H^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right)
$$

Hence, by substituting the corresponding values in the above expression, we get the solid angle subtended by each regular n-gonal face at the centre of the uniform polyhedron as follows

$$
\begin{gathered}
\omega_{n-g o n}=2 \pi-2 n \sin ^{-1}\left(\frac{2(E O) \sin \frac{\pi}{n}}{\sqrt{4(E O)^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\frac{2\left(\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right) \sin \frac{\pi}{n}}{\left.\sqrt{4\left(\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right)+a^{2} \cot ^{2} \frac{\pi}{n}}\right)}\right. \\
\sqrt{2})
\end{gathered}
$$

$$
\left.\begin{array}{rl}
& =2 \pi-2 n \sin ^{-1}\left(\frac{\left.\sin \frac{\pi}{n} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right)}{} \begin{array}{rl}
=2 \pi-2 n \sin ^{-1}\left(\frac{\sin \operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}+\cot ^{2} \frac{\pi}{n}\right.
\end{array}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\frac{\sqrt{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}{\sqrt{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}+2 \cot ^{2} \frac{\pi}{n}}}\right) \\
4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec}^{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}+2 \operatorname{cosec}^{2} \frac{\pi}{n}}-2
\end{array}\right)
$$

$$
\therefore \omega_{n-g o n}=2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}\right) \quad \forall n \in N \& n \geq 3
$$

$$
\text { Area of each } n-g o n a l \text { face, } A_{n-g o n}=\frac{1}{4} n a^{2} \cot \frac{\pi}{n}
$$

Normal distance $\left(H_{t}\right)$ of trapezoidal faces from the centre of uniform polyhedron: The normal distance $\left(H_{t}\right)$ of each of 2 n congruent trapezoidal faces from the centre of uniform polyhedron is given as

$$
\begin{aligned}
H_{t} & =O G=a \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \quad \quad \text { (from the eq(IV) above) } \\
& \therefore H_{t}=a \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}} \quad \forall n \in N \& n \geq 3
\end{aligned}
$$

It's clear that all 2 n congruent trapezoidal faces are at an equal normal distance $\boldsymbol{H}_{\boldsymbol{t}}$ from the centre of any uniform polyhedron.

Solid angle $\left(\omega_{t}\right)$ subtended by each of $\mathbf{2 n}$ congruent trapezoidal faces at the centre of uniform polyhedron: since a uniform polyhedron is a closed surface \& we know that the total solid angle, subtended by any closed surface at any point lying inside it, is $\mathbf{4 \pi} \boldsymbol{s r}$ (Ste-radian) hence the sum of solid angles subtended by $\mathbf{2}$ congruent regular \mathbf{n}-gonal \& $\mathbf{2 n}$ congruent trapezoidal faces at the centre of the uniform polyhedron must be $4 \pi s r$. Thus we have

$$
\begin{aligned}
& 2\left[\omega_{n-\text { gon }}\right]+2 n\left[\omega_{\text {trapezium }}\right]=4 \pi \text { or } 2 n\left[\omega_{\text {trapezium }}\right]=4 \pi-2\left[\omega_{n-\text { gon }}\right] \\
& \omega_{\text {trapezium }}=\frac{2 \pi-\omega_{n-\text { gon }}}{n}=\frac{2 \pi-\left[2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}\right)\right]}{n} \\
& =2 \sin ^{-1}\left(\sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}\right) \\
& \therefore \quad \omega_{t}=2 \sin ^{-1}\left(\sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}\right) \\
& \forall \boldsymbol{n} \in N \& n \geq 3
\end{aligned}
$$

Interior angles $(\boldsymbol{\alpha} \& \boldsymbol{\beta})$ of the trapezoidal faces of uniform polyhedron: From above figures $1 \& 2$, let α be acute angle $\& \beta$ be obtuse angle. Acute angle α is determined as follows

$$
\begin{aligned}
& \sin \angle B A D=\frac{M N}{A D} \Rightarrow \sin \alpha=\frac{\frac{a}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}}{a} \text { from eq(III) above } \\
& =\frac{1}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}} \text { or } \alpha=\sin ^{-1}\left(\frac{1}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right) \\
& \therefore \text { Acute angle, } \alpha=\sin ^{-1}\left(\frac{1}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right) \quad \forall n \in N \& n \geq \mathbf{3}
\end{aligned}
$$

In trapezoidal face $A B C D$, we know that the sum of all interior angles (of a quadrilateral) is $\mathbf{3 6 0}{ }^{\boldsymbol{o}}$

$$
\begin{aligned}
& \therefore 2 \alpha+2 \beta=360^{\circ} \text { or } \beta=180^{\circ}-\alpha \\
& \therefore \text { Obtuse angle, } \boldsymbol{\beta}=\mathbf{1 8 0}^{\circ}-\boldsymbol{\alpha}
\end{aligned}
$$

Sides of the trapezoidal face of uniform polyhedron: All the sides of each trapezoidal face can be determined as follows (See figure 2 above)

$$
A D=B C=C D=a \& A B=2 R_{o} \sin \frac{\pi}{n}=\frac{a}{2}\left(1+\sqrt{1+8 \sin ^{2} \frac{\pi}{n}}\right) \quad(\text { from eq }(I) \text { above })
$$

Distance between parallel sides $A B$ \& CD of trapezoidal face $A B C D$

$$
\therefore M N=\frac{a}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}} \quad \text { (from eq(III)above) }
$$

Hence, the area of each of $\mathbf{2 n}$ congruent trapezoidal faces of a uniform polyhedron is given as follows
Area of trapezium $\boldsymbol{A B C D}=\frac{1}{2}$ (sum of parallel sides $) \times($ normal distance between parallel sides $)$

$$
\left.\begin{array}{l}
\Rightarrow A_{t}=\frac{1}{2}(A B+C D)(M N)=\frac{1}{2}\left(R_{o}+a\right)\left(\frac{a}{2} \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right) \\
=\frac{a}{4}\left(\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)+a\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}} \\
\quad=\frac{a^{2}}{16}\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}} \\
\therefore A_{t}
\end{array}=\frac{a^{2}}{16}\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right)
$$

Important parameters of a uniform polyhedron:

1. Inner (inscribed) radius $\left(\boldsymbol{R}_{\boldsymbol{i}}\right)$: It is the radius of the largest sphere inscribed (trapped inside) by a uniform polyhedron. The largest inscribed sphere either touches both the congruent regular n-gonal faces or touches all $2 n$ congruent trapezoidal faces depending on the value of no. of sides n of the regular polygonal face \& is equal to the minimum value out of $H_{n-g o n} \& H_{t} \&$ is given as follows

Where,

$$
\begin{gathered}
\boldsymbol{R}_{\boldsymbol{i}}=\boldsymbol{\operatorname { M i n }}\left(\boldsymbol{H}_{n-\boldsymbol{g o n}}, \boldsymbol{H}_{\boldsymbol{t}}\right) \\
H_{n-\text { gon }}=\frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}
\end{gathered}
$$

\&

Mathematical analysis of uniform polyhedra with 2 regular n-gonal \& $2 n$ trapezoidal faces

 (Generalized formula for uniform polyhedra with regular polygonal \& trapezoidal faces)$$
H_{t}=a \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}}
$$

2. Outer (circumscribed) radius $\left(\boldsymbol{R}_{\boldsymbol{o}}\right)$: It is the radius of the smallest sphere circumscribing a uniform polyhedron or it's the radius of a spherical surface passing through all 3 n vertices of a uniform polyhedron. It is given from eq(I) as follows

$$
R_{o}=\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)
$$

3. Surface area $\left(\boldsymbol{A}_{\boldsymbol{s}}\right)$: We know that a uniform polyhedron has 2 congruent regular n -gonal faces $\& 2 \mathrm{n}$ congruent trapezoidal faces. Hence, its surface area is given as follows

$$
A_{s}=2(\text { area of regular polygon })+2 n(\text { area of trapezium } A B C D)
$$

We know that area of any regular n-polygon with each side of length a is given as

$$
A=\frac{1}{4} n a^{2} \cot \frac{\pi}{n}
$$

Hence, by substituting all the corresponding values in the above expression, we get

$$
\begin{gathered}
A_{s}=2 \times\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)+2 n \times\left(\frac{1}{2}(A B+C D)(M N)\right) \\
=2 \times\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)+2 n \times\left(\frac{a^{2}}{16}\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right) \\
=\frac{n a^{2}}{8}\left(4 \cot \frac{\pi}{n}+\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right) \\
\therefore A_{\boldsymbol{s}}= \\
8 \boldsymbol{n a}^{2}\left(4 \cot \frac{\pi}{n}+\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right)
\end{gathered}
$$

4. Volume (V): We know that a uniform polyhedron has 2 congruent regular n-gonal \& $2 n$ congruent trapezoidal faces. Hence, the volume (\mathbf{V}) of the uniform polyhedron is the sum of volumes of all its $(2 \boldsymbol{n}+2)$ elementary right pyramids with regular n-gonal \& trapezoidal bases (faces) given as follows

$$
\begin{aligned}
& V=2(\text { volume of right pyramid with regular polygonal base }) \\
&+2 n(\text { volume of right pyramid with trapezoidal base } A B C D)
\end{aligned}
$$

$$
=2\left(\frac{1}{3}(\text { area of regular polygon }) \times H_{n-\text { gon }}\right)+2 n\left(\frac{1}{3}(\text { area of trapezium } A B C D) \times H_{t}\right)
$$

$$
\begin{aligned}
& =2\left(\begin{array}{l}
\left.\frac{1}{3}\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right) \times \frac{a}{2} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right) \\
\\
+2 n\left(\frac{1}{3}\left(\frac{a^{2}}{16}\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right)\right. \\
\end{array} \quad \times a \sqrt{\left.\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}\right)}\right.
\end{aligned}
$$

$$
=\frac{1}{12} n a^{3} \cot \frac{\pi}{n} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}
$$

$$
+\frac{1}{24} n a^{3}\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{2}}
$$

$$
\therefore V=\frac{1}{24} n a^{3}\left(2 \cot \frac{\pi}{n} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right.
$$

$$
\left.+\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{2}}\right)
$$

$\forall n \in N \& n \geq 3$

5. Mean radius $\left(\boldsymbol{R}_{\boldsymbol{m}}\right)$: It is the radius of the sphere having a volume equal to that of a uniform polyhedron. It is calculated as follows
volume of sphere with mean radius $R_{m}=$ volume of the uniform polyhedron

$$
\frac{4}{3} \pi\left(R_{m}\right)^{3}=V \Rightarrow\left(R_{m}\right)^{3}=\frac{3 V}{4 \pi} \quad \Rightarrow \quad \boldsymbol{R}_{\boldsymbol{m}}=\left(\frac{\mathbf{3 V}}{4 \boldsymbol{\pi}}\right)^{\frac{1}{3}}
$$

For finite value of edge length a of regular n-gonal face $\Rightarrow \boldsymbol{R}_{\boldsymbol{i}}<\boldsymbol{R}_{\boldsymbol{m}}<\boldsymbol{R}_{\boldsymbol{o}}$
Hence, by setting different values of no. of sides $n=3,4,5,6,7$ \qquad we can find out all the important parameters of any regular polyhedral with known value of side a of regular n-gonal face.

Mathematical analysis of uniform polyhedra with 2 regular n-gonal \& $2 n$ trapezoidal faces (Generalized formula for uniform polyhedra with regular polygonal \& trapezoidal faces)

Conclusions: All the formula above are generalised which are applicable to calculate the important parameters, of any uniform polyhedron having 2 congruent regular n-gonal faces, 2 n congruent trapezoidal faces with three equal sides, $5 n$ edges $\& 3 n$ vertices lying on a spherical surface, such as solid angle subtended by each face at the centre, normal distance of each face from the centre, inner radius, outer radius, mean radius, surface area \& volume.

Let there be any uniform polyhedron having 2 congruent regular n-gonal faces each with edge length $a, \mathbf{2 n}$ congruent trapezoidal faces each with three sides equal to a \& forth equal to $2 R_{o} \sin \pi / n, \mathbf{5 n}$ edges and $\mathbf{3 n}$ vertices lying on a spherical surface then all its important parameters are calculated as tabulated below

Congruent polygonal faces	No. of faces	Nor the	al distance of each face from the centre of iform polyhedron	Solid angle subtended by each face at the centre of the uniform polyhedron (in sr)
Regular polygon	2		$\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}$	$2 \pi-2 n \sin ^{-1} \sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}$
Trapezium	$2 n$		$\frac{\cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}}{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}$	$2 \sin ^{-1}\left(\sqrt{\frac{3-4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2+\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}}\right)$
Inner (inscribed) radius$\left(\boldsymbol{R}_{i}\right)$			$R_{i}=$ Minimum normal distance of any face from the centre	
$\begin{aligned} & \text { Outer (circumscribed) } \\ & \text { radius }\left(\boldsymbol{R}_{\boldsymbol{o}}\right) \end{aligned}$			$R_{o}=\frac{a}{4}\left(\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right)$	
Mean radius				$R_{m}=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}}$
Surface area ($\boldsymbol{A}_{\boldsymbol{s}}$)			$A_{s}=\frac{n a^{2}}{8}\left(4 \cot \frac{\pi}{n}+\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{\frac{3+4 \cos ^{2} \frac{\pi}{n}+\sqrt{9-8 \cos ^{2} \frac{\pi}{n}}}{2}}\right)$	
Volume (V)			$\left.\begin{array}{rl} V=\frac{1}{24} n a^{3}\left(2 \cot \frac{\pi}{n} \sqrt{\frac{4-\operatorname{cosec}^{2} \frac{\pi}{n}+\operatorname{cosec} \frac{\pi}{n} \sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}}{2}}\right. \\ & +\left(4+\operatorname{cosec} \frac{\pi}{n}+\sqrt{8+\operatorname{cosec}^{2} \frac{\pi}{n}}\right) \sqrt{2 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}+\cot \frac{\pi}{n} \sqrt{8 \cos ^{2} \frac{\pi}{n}+\cot ^{2} \frac{\pi}{n}}} \frac{2}{2} \end{array}\right)$	

Note: Above articles had been developed \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

March, 2015
Email: rajpootharishchandra@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

