Mathematical Analysis of Trapezohedron With Right Kite Faces (Application of HCR's Theory of Polygon)

Mr Harish Chandra Rajpoot
M.M.M. University of Technology, Gorakhpur-273010 (UP), India

April, 2015
Introduction: We are here to analyse an n-gonal trapezohedron/deltohedron having 2 n congruent faces each as a right kite (i.e. cyclic quadrilateral consisting of two congruent right triangles with a hypotenuse in common), 4 n edges $\&(2 \mathrm{n}+2)$ vertices lying on a spherical surface with a certain radius. All 2 n right kite faces are at an equal normal distance from the centre of the trapezohedron. Each of $2 n$ right kite faces always has two right angles, one acute angle $(\alpha) \&$ other obtuse angle $(\beta)\left(\forall \beta=180^{\circ}-\alpha\right)$. Its each face has two pairs of unequal sides (edges) $a \& b(\forall a \leq b$, equality holds only in case of a cube) \& can be divided into two congruent right triangles having longer diagonal of the face as their common hypotenuse. It has two identical \& diagonally opposite vertices say vertices C \& E out of total $(2 n+2)$ vertices at each of which n right kite faces meet together \& rest 2 n vertices are identical at each of which three right kite faces meet together (See the figure 1).
no. of congruent right kite faces $=2 n$
no. of edges $=4 n \quad \& \quad$ no.of vertices $=2 n+2$
Analysis of n-gonal trapezohedron/deltohedron: Let there be a

Figure 1: A trapezohedron having $\mathbf{2 n}+2$ vertices, 4 n edges $\& \mathbf{2 n}$ congruent faces each as a right kite having two pairs of unequal sides $\boldsymbol{a} \& \boldsymbol{b}(\forall a<$ $b)$, two right angles, one acute angle α \& one obtuse angle $\beta\left(\forall \boldsymbol{\beta}=180^{\circ}-\alpha\right)$ trapezohedron having 2 n congruent faces each as a right kite having two pairs of unequal sides (edges) $a \& b(\forall a<b)$. Now let's first determine the relation between two unequal sides of the right kite face of the trapezohedron by calculating the ratio of unequal sides (edges) $a \& b$ in the generalized form.

Derivation of relation between unequal sides (edges) $\boldsymbol{a} \& \boldsymbol{b}$ of each right kite face of the trapezohedron/deltohedron: Let h be the normal distance of each of $2 n$ congruent right kite faces from the centre O of a trapezohedron. Now draw a perpendicular OO' from the centre O of the polyhedron at the point O^{\prime} to any of its right kite faces say face $A B C D$. Since the right kite face $A B C D$ is a cyclic quadrilateral hence all its vertices $A, B, C \& D$ lie on the circle \& the perpendicular $0 O^{\prime}$ will have its foot O^{\prime} at the centre of the circumscribed circle. (See figure 2). Now join all the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ to the centre O^{\prime} to obtain two congruent right triangles $\triangle A B C \& \triangle A D C$. Thus we have,

$$
\begin{aligned}
A B & =A D=a \& B C=C D=b \quad \forall a<b \\
& \Rightarrow O^{\prime} A=O^{\prime} B=O^{\prime} C=O^{\prime} D=\frac{A C}{2}=\frac{\sqrt{(A B)^{2}+(B C)^{2}}}{2}=\frac{\sqrt{a^{2}+b^{2}}}{2}
\end{aligned}
$$

Figure 2: A perpendicular 00^{\prime} (normal to the plane of paper) is drawn from the centre $O(0,0, h)$ of the trapezohedron to the right kite face $A B C D$ at the circumscribed centre O^{\prime} of face $A B C D$ with $A B=$ $A D=a \& B C=C D=b \quad \forall a<b$

Now, draw the perpendiculars $\mathrm{O}^{\prime} \mathrm{M}$ \& $\mathrm{O}^{\prime} \mathrm{N}$ to the sides AB \& $B C$ at their mid-points M \& N respectively. Thus isosceles $\triangle A O^{\prime} B$ is divided into two congruent right triangles $\triangle O^{\prime} M A \& \Delta O^{\prime} M B$. Similarly, isosceles $\triangle B O^{\prime} C$ is divided into two congruent right triangles $\triangle O^{\prime} N B \& \Delta O^{\prime} N C$.

In right $\Delta O^{\prime} M A$

$$
\boldsymbol{O}^{\prime} \boldsymbol{M}=\sqrt{\left(O^{\prime} A\right)^{2}-(A M)^{2}}=\sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}}=\frac{\boldsymbol{b}}{\mathbf{2}}
$$

Similarly, in right $\Delta O^{\prime} N B$

$$
\boldsymbol{O}^{\prime} \boldsymbol{N}=\sqrt{\left(O^{\prime} B\right)^{2}-(B N)^{2}}=\sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}}=\frac{\boldsymbol{a}}{\mathbf{2}}
$$

We know from HCR's Theory of Polygon that the solid angle (ω), subtended by a right triangle having orthogonal sides $\boldsymbol{a} \& \boldsymbol{b}$ at any point at a normal distance \boldsymbol{h} on the vertical axis passing through the common vertex of the side \mathbf{b} \& hypotenuse, is given by HCR's Standard Formula-1 as follows

$$
\omega=\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+b^{2}}}\right)\right\}
$$

Hence, solid angle $\left(\boldsymbol{\omega}_{\Delta \boldsymbol{O}^{\prime} \boldsymbol{M A}}\right)$ subtended by right $\Delta \boldsymbol{O}^{\prime} \boldsymbol{M} \boldsymbol{A}$ at the centre $\mathrm{O}(0,0, h)$ of polyhedron is given as

$$
\omega_{\triangle O^{\prime} M A}=\sin ^{-1}\left(\frac{(A M)}{\sqrt{(A M)^{2}+\left(O^{\prime} M\right)^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{(A M)}{\sqrt{(A M)^{2}+\left(O^{\prime} M\right)^{2}}}\right)\left(\frac{\left(O O^{\prime}\right)}{\sqrt{\left(O O^{\prime}\right)^{2}+\left(O^{\prime} M\right)^{2}}}\right)\right\}
$$

Now, by substituting all the corresponding values in the above expression we have

$$
\begin{align*}
\omega_{\triangle O^{\prime} M A} & =\sin ^{-1}\left(\frac{\left(\frac{a}{2}\right)}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{\left(\frac{a}{2}\right)}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{b}{2}\right)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+b^{2}}}\right)\right\} \\
\therefore \omega_{\triangle O^{\prime} M A} & =\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right) \tag{I}
\end{align*}
$$

Similarly, solid angle $\left(\boldsymbol{\omega}_{\Delta \boldsymbol{O}^{\prime} \boldsymbol{N B}}\right)$ subtended by right $\Delta \boldsymbol{O}^{\prime} \boldsymbol{N} \boldsymbol{B}$ at the centre $\mathrm{O}(0,0, h)$ of polyhedron is given as

$$
\begin{aligned}
\omega_{\triangle O^{\prime} N B} & =\sin ^{-1}\left(\frac{(B N)}{\sqrt{(B N)^{2}+\left(O^{\prime} N\right)^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{(B N)}{\sqrt{(B N)^{2}+\left(O^{\prime} N\right)^{2}}}\right)\left(\frac{\left(O O^{\prime}\right)}{\sqrt{\left(O O^{\prime}\right)^{2}+\left(O^{\prime} N\right)^{2}}}\right)\right\} \\
\omega_{\triangle O^{\prime} N B} & =\sin ^{-1}\left(\frac{\left(\frac{b}{2}\right)}{\left.\sqrt{\left(\frac{b}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}\right)}\right)-\sin ^{-1}\left\{\left(\frac{\left(\frac{b}{2}\right)}{\sqrt{\left(\frac{b}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+\left(\frac{a}{2}\right)^{2}}}\right)\right\} \\
& =\sin ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\left(\frac{2 h}{\sqrt{4 h^{2}+a^{2}}}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \omega_{\Delta O^{\prime} N B}=\sin ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left(\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}}\right) \tag{II}
\end{equation*}
$$

Now, solid angle $\left(\omega_{A B C D}\right)$ subtended by the right kite face $A B C D$ at the centre $O(0,0, h)$ of the polyhedron is given as

$$
\begin{aligned}
\boldsymbol{\omega}_{A B C D} & =\omega_{\triangle A B C}+\omega_{\triangle A D C}=2\left(\omega_{\Delta A B C}\right) \quad(\text { since }, \quad \Delta A B C \& \triangle A D C \text { are congruents }) \\
& =2\left(\omega_{\Delta A O^{\prime} B}+\omega_{\Delta B O^{\prime} C}\right)=2\left\{\left(\omega_{\Delta O^{\prime} M A}+\omega_{\Delta O^{\prime} M B}\right)+\left(\omega_{\Delta O^{\prime}{ }^{\prime} B B}+\omega_{\Delta O^{\prime} N C}\right)\right\} \\
& =2\left\{2\left(\omega_{\Delta O^{\prime} M A}\right)+2\left(\omega_{\Delta O^{\prime}{ }_{N B}}\right)\right\}=\mathbf{4}\left(\boldsymbol{\omega}_{\Delta O^{\prime} M A}+\boldsymbol{\omega}_{\Delta \boldsymbol{o}^{\prime}{ }_{N B}}\right) \quad \text { (by congruent triangles) }
\end{aligned}
$$

Since all 2 n right kite faces of polyhedron are congruent hence the solid angle subtended by each right kite face at the centre of trapezohedron is

$$
\begin{gathered}
=\frac{\text { total solid angle }}{n o . o f \text { congruent right kite faces }}=\frac{4 \pi}{2 n}=\frac{2 \pi}{n} \\
\Rightarrow \omega_{A B C D}=\frac{2 \pi}{n} \text { or } 4\left(\omega_{\triangle O^{\prime} M A}+\omega_{\Delta O^{\prime} N B}\right)=\frac{2 \pi}{n} \text { or } \omega_{\triangle O^{\prime} M A}+\omega_{\triangle O^{\prime} N B}=\frac{2 \pi}{4 n}=\frac{\pi}{2 n} \\
\therefore \omega_{\Delta O^{\prime} M A}+\omega_{\triangle O^{\prime} N B}=\frac{\pi}{2 n}
\end{gathered}
$$

Now, by setting the corresponding values from the eq(I) \& (II) in the above expression, we get

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)+\sin ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)-\sin ^{-1}\left(\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}}\right) \\
& =\frac{\pi}{2 n} \\
& \Rightarrow\left[\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)+\sin ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\right] \\
& -\left[\sin ^{-1}\left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)+\sin ^{-1}\left(\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}}\right)\right]=\frac{\pi}{2 n} \\
& \Rightarrow\left[\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}} \sqrt{1-\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}+\frac{b}{\sqrt{a^{2}+b^{2}}} \sqrt{1-\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)^{2}}\right)\right] \\
& -\left[\operatorname { s i n } ^ { - 1 } \left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}} \sqrt{1-\left(\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}}\right)^{2}}\right.\right. \\
& \left.\left.+\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}} \sqrt{1-\left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)^{2}}\right)\right]=\frac{\pi}{2 n} \\
& \Rightarrow \sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}} \times \frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{a^{2}+b^{2}}} \times \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \\
& -\sin ^{-1}\left(\frac{2 a h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}} \sqrt{\frac{4 a^{2} h^{2}+4 b^{2} h^{2}+a^{4}+a^{2} b^{2}-4 b^{2} h^{2}}{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}}\right. \\
& \left.+\frac{2 b h}{\sqrt{\left(a^{2}+b^{2}\right)\left(4 h^{2}+a^{2}\right)}} \sqrt{\frac{4 a^{2} h^{2}+4 b^{2} h^{2}+a^{2} b^{2}+b^{4}-4 a^{2} h^{2}}{\left(a^{2}+b^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)=\frac{\pi}{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sin ^{-1}\left(\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}\right) \\
& -\sin ^{-1}\left(\frac{2 a h \sqrt{a^{2}\left(4 h^{2}+a^{2}+b^{2}\right)}}{\left(a^{2}+b^{2}\right) \sqrt{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}+\frac{2 b h \sqrt{b^{2}\left(4 h^{2}+a^{2}+b^{2}\right)}}{\left(a^{2}+b^{2}\right) \sqrt{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)=\frac{\pi}{2 n} \\
& \Rightarrow \sin ^{-1}\left(\frac{a^{2}+b^{2}}{a^{2}+b^{2}}\right)-\sin ^{-1}\left(\frac{2 h\left(a^{2}+b^{2}\right) \sqrt{\left(4 h^{2}+a^{2}+b^{2}\right)}}{\left(a^{2}+b^{2}\right) \sqrt{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)=\frac{\pi}{2 n} \\
& \Rightarrow \sin ^{-1}(1)-\sin ^{-1}\left(2 h \sqrt{\frac{4 h^{2}+a^{2}+b^{2}}{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)=\frac{\pi}{2 n} \\
& \Rightarrow \sin ^{-1}\left(2 h \sqrt{\frac{4 h^{2}+a^{2}+b^{2}}{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)=\sin ^{-1}(1)-\frac{\pi}{2 n}=\frac{\pi}{2}-\frac{\pi}{2 n} \\
& \Rightarrow 2 h \sqrt{\frac{4 h^{2}+a^{2}+b^{2}}{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}=\sin \left(\frac{\pi}{2}-\frac{\pi}{2 n}\right)=\cos \frac{\pi}{2 n} \\
& \Rightarrow\left(2 h \sqrt{\frac{4 h^{2}+a^{2}+b^{2}}{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}}\right)^{2}=\left(\cos \frac{\pi}{2 n}\right)^{2}=\cos ^{2} \frac{\pi}{2 n} \\
& \Rightarrow \frac{4 h^{2}\left(4 h^{2}+a^{2}+b^{2}\right)}{\left(4 h^{2}+a^{2}\right)\left(4 h^{2}+b^{2}\right)}=\cos ^{2} \frac{\pi}{2 n} \\
& \Rightarrow 16 h^{4}+4\left(a^{2}+b^{2}\right) h^{2}=\left(16 h^{4}+4\left(a^{2}+b^{2}\right) h^{2}+a^{2} b^{2}\right) \cos ^{2} \frac{\pi}{2 n} \\
& \Rightarrow 16\left(1-\cos ^{2} \frac{\pi}{2 n}\right) h^{4}+4\left(a^{2}+b^{2}\right)\left(1-\cos ^{2} \frac{\pi}{2 n}\right) h^{2}-a^{2} b^{2} \cos ^{2} \frac{\pi}{2 n}=0 \\
& \Rightarrow 16 \sin ^{2} \frac{\pi}{2 n} h^{4}+4 \sin ^{2} \frac{\pi}{2 n}\left(a^{2}+b^{2}\right) h^{2}-a^{2} b^{2} \cos ^{2} \frac{\pi}{2 n}=0 \\
& \Rightarrow 16 h^{4}+4\left(a^{2}+b^{2}\right) h^{2}-a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}=0
\end{aligned}
$$

Now, solving the above bi-quadratic equation to obtain the values of h^{2} as follows

$$
\begin{aligned}
& \Rightarrow h^{2}=\frac{-4\left(a^{2}+b^{2}\right) \pm \sqrt{\left(-4\left(a^{2}+b^{2}\right)\right)^{2}+4(16) a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}}}{2(16)} \\
&=\frac{-4\left(a^{2}+b^{2}\right) \pm 4 \sqrt{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}}}{32} \\
&=\frac{-\left(a^{2}+b^{2}\right) \pm \sqrt{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}}}{8}
\end{aligned}
$$

Since, $h>0$ or $h^{2}>0$ hence, by taking positive sign we get the required value of normal height h as follows

$$
\begin{align*}
& h^{2}=\frac{-\left(a^{2}+b^{2}\right)+\sqrt{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}}}{8}=\frac{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(a^{2}+b^{2}\right)}{8} \\
& \text { Normal distance, } \boldsymbol{h}=\frac{\sqrt{\sqrt{\left\{\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\right)^{2}+\mathbf{4 a}^{2} \boldsymbol{b}^{2} \boldsymbol{c o t}^{2} \frac{\boldsymbol{\pi}}{2 \boldsymbol{n}}\right\}}-\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\right)}}{\mathbf{2 \sqrt { \boldsymbol { 2 } }}} \ldots \ldots \ldots \ldots(I I) \tag{III}
\end{align*}
$$

Outer (circumscribed) radius ($\boldsymbol{R}_{\boldsymbol{o}}$) of n -gonal trapezohedron (i.e. radius of the spherical surface passing through all $(\mathbf{2 n}+\mathbf{2})$ vertices of trapezohedron): Let R_{o} be the circumscribed radius i.e. the radius of the spherical surface passing through all $2 n+2$ vertices of a trapezohedron. (See figure 3 below)

Consider the right kite face $A B C D$ \& join all its vertices $A, B, C \& D$ to the centre O of n-gonal trapezohedron. Draw a perpendicular OO' from the centre O to the face $A B C D$ at the point O^{\prime}. Since the spherical surface with a radius R_{o} is passing though all $2 \mathrm{n}+2$ vertices of polyhedron hence we have

$$
O A=O B=O C=O D=R_{o} \quad \& O O^{\prime}=h
$$

Now, in right $\triangle O O^{\prime} A$

$$
\Rightarrow(O A)^{2}=\left(O O^{\prime}\right)^{2}+\left(O^{\prime} A\right)^{2}=h^{2}+\left(O^{\prime} A\right)^{2}
$$

$$
=\left(\frac{\sqrt{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(a^{2}+b^{2}\right)}}{2 \sqrt{2}}\right)^{2}+\left(\frac{\sqrt{a^{2}+b^{2}}}{2}\right)^{2}
$$

$$
\begin{aligned}
& =\frac{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(a^{2}+b^{2}\right)}{8}+\frac{a^{2}+b^{2}}{4} \\
& =\frac{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(a^{2}+b^{2}\right)+2\left(a^{2}+b^{2}\right)}{8}
\end{aligned}
$$

Figure 3: An elementary right pyramid OABCD is obtained by joining all four vertices $A, B, C \& D$ of right kite face $A B C D$ to the centre O of an n-gonal trapezohedron/deltohedron

$$
\Rightarrow R_{o}^{2}=\frac{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}+a^{2}+b^{2}}{8}
$$

$$
\Rightarrow 8{R_{o}}^{2}=\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}+a^{2}+b^{2}
$$

Since, all 12 vertices are located on the circumscribed spherical surface, Let us consider a great circles with the centre ' \mathbf{O} ' passing through two identical \& diagonally opposite vertices $\mathbf{C} \boldsymbol{\&} \mathbf{E}$ (as shown in the figure 4 below). Hence the line $C E$ is a diametric line passing through the centre O of a great circle (on the circumscribed spherical surface) \& the vertices C, A \& E are lying on the (great) circle hence, the angle CAE = 90°. Now

In right $\triangle C A E$

$$
(C E)^{2}=(A C)^{2}+(A E)^{2}
$$

Now, by substituting all the corresponding values in the above expression we get

$$
\begin{gather*}
\left(2 R_{o}\right)^{2}=\left(\sqrt{a^{2}+b^{2}}\right)^{2}+(b)^{2} \\
4{R_{o}}^{2}=a^{2}+b^{2}+b^{2}=a^{2}+2 b^{2} \\
\Rightarrow \mathbf{8} \boldsymbol{R}_{\boldsymbol{o}}{ }^{2}=\mathbf{2} \boldsymbol{a}^{2}+\mathbf{4} \boldsymbol{b}^{\mathbf{2}} \quad \ldots \ldots \ldots \ldots \ldots .(V) \tag{V}
\end{gather*}
$$

Now, equating eq(IV) \& (V), we get

$$
\begin{gathered}
2 a^{2}+4 b^{2}=\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}+a^{2}+b^{2} \\
\Rightarrow a^{2}+3 b^{2}=\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}} \\
\Rightarrow\left(a^{2}+3 b^{2}\right)^{2}=\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n} \\
\Rightarrow a^{4}+9 b^{4}+6 a^{2} b^{2}=a^{4}+b^{4}+2 a^{2} b^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n} \\
\Rightarrow 8 b^{4}+4 a^{2} b^{2}-4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}=0 \text { or } 8 b^{4}-4\left(\cot ^{2} \frac{\pi}{2 n}-1\right) a^{2} b^{2}=0 \\
\text { or } 2 b^{4}-\left(\cot ^{2} \frac{\pi}{2 n}-1\right) a^{2} b^{2}=0 \Rightarrow b^{2}\left(2 b^{2}-\left(\cot ^{2} \frac{\pi}{2 n}-1\right) a^{2}\right)=0
\end{gathered}
$$

But, $b \neq 0$ hence, we have

$$
\begin{aligned}
& 2 b^{2}-\left(\cot ^{2} \frac{\pi}{2 n}-1\right) a^{2}=0 \text { or } \frac{a^{2}}{b^{2}}=\frac{2}{\cot ^{2} \frac{\pi}{2 n}-1} \text { or } \frac{a}{b}=\sqrt{\frac{2}{\cot ^{2} \frac{\pi}{2 n}-1}} \\
& \begin{aligned}
\frac{a}{b} & =\sqrt{\frac{2 \tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}}=\sqrt{\tan \frac{\pi}{2 n}\left(\frac{2 \tan \frac{\pi}{2 n}}{\sqrt{1-\tan ^{2} \frac{\pi}{2 n}}}\right)}=\sqrt{\tan \frac{\pi}{2 n}\left(\tan \frac{\pi}{n}\right)} \\
& =\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
\end{aligned} \text { or } a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
\end{aligned}
$$

\therefore The required relation between unequal sides (edges) a\&b of ngonal trapezohedron

$$
a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \quad(\forall n \in N \& n \geq 3 \Rightarrow a \leq b)
$$

In right $\triangle A B C$ (from the figure2)

$$
\tan \alpha A C B=\frac{A B}{B C}=\frac{a}{b} \Rightarrow \tan \frac{\alpha}{2}=\frac{a}{b}=\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \text { or } \alpha=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)
$$

\therefore acute angle, $\alpha=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \quad \forall n \geq 3 \Rightarrow \alpha \leq 90^{\circ}$
\therefore obtuse angle, $\beta=180^{\circ}-\alpha$
Now, setting the value of smaller side (edge) a in term of larger side (edge) b in the eq(III), we get

$$
h=\frac{\sqrt{\sqrt{\left\{\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(a^{2}+b^{2}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{\sqrt{\left\{\left(\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2}+b^{2}\right)^{2}+4\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2} b^{2} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2}+b^{2}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{\sqrt{\left\{\left(b^{2} \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}+b^{2}\right)^{2}+4 b^{4} \tan \frac{\pi}{n} \tan \frac{\pi}{2 n} \cot ^{2} \frac{\pi}{2 n}\right\}}-\left(b^{2} \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}+b^{2}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{\sqrt{b^{4}\left\{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{2}+4 \tan \frac{\pi}{n} \cot \frac{\pi}{2 n}\right\}}-b^{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{b^{2} \sqrt{\left\{\left(1+\frac{2 \tan \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}} \tan \frac{\pi}{2 n}\right)^{2}+4 \frac{2 \tan \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}} \cot \frac{\pi}{2 n}\right\}}-b^{2}\left(1+\frac{2 \tan \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}} \tan \frac{\pi}{2 n}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{b \sqrt{\sqrt{\left\{\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)^{2}+\frac{8}{1-\tan ^{2} \frac{\pi}{2 n}}\right\}}-\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{b \sqrt{\sqrt{\left\{\frac{\left(1+\tan ^{2} \frac{\pi}{2 n}\right)^{2}+8\left(1-\tan ^{2} \frac{\pi}{2 n}\right)}{\left(1-\tan ^{2} \frac{\pi}{2 n}\right)^{2}}\right\}}-\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}}{2 \sqrt{2}}
$$

$$
=\frac{b \sqrt{\frac{1}{1-\tan ^{2} \frac{\pi}{2 n}} \sqrt{\left\{1+\tan ^{4} \frac{\pi}{2 n}+2 \tan ^{2} \frac{\pi}{2 n}+8-8 \tan ^{2} \frac{\pi}{2 n}\right\}}-\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}}{2 \sqrt{2}}
$$

$$
\begin{aligned}
& =\frac{b \sqrt{\frac{1}{1-\tan ^{2} \frac{\pi}{2 n}} \sqrt{\left\{9+\tan ^{4} \frac{\pi}{2 n}-6 \tan ^{2} \frac{\pi}{2 n}\right\}}-\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}}{2 \sqrt{2}} \\
& =\frac{b \sqrt{\frac{1}{1-\tan ^{2} \frac{\pi}{2 n}}\left(\sqrt{\left(3-\tan ^{2} \frac{\pi}{2 n}\right)^{2}}-\left(1+\tan ^{2} \frac{\pi}{2 n}\right)\right)}}{2 \sqrt{2}}=b \sqrt{\frac{\left(\left(3-\tan ^{2} \frac{\pi}{2 n}\right)-\left(1+\tan ^{2} \frac{\pi}{2 n}\right)\right)}{1-\tan ^{2} \frac{\pi}{2 n}}} \\
& 2 \sqrt{2} \\
& = \\
& b \sqrt{\frac{2\left(1-\tan ^{2} \frac{\pi}{2 n}\right)}{1-\tan ^{2} \frac{\pi}{2 n}}} \frac{b \sqrt{2}}{2 \sqrt{2}}=\frac{b \sqrt{2}}{2 \sqrt{2}}=\frac{b}{2}
\end{aligned}
$$

\therefore Normal distance of each face from the centre of trapezohedron,

$$
h=\frac{b}{2} \quad \forall a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
$$

Above is the required expression to calculate the normal distance \boldsymbol{h} of each right kite face from the centre of n -gonal trapezohedron. Normal height h merely depends on the larger side (edge) b irrespective of no of faces n. Normal distance \boldsymbol{h} is always equal to the inner (inscribed) radius $\left(\boldsymbol{R}_{i}\right)$ i.e. the radius of the spherical surface touching all 2 n congruent right kite faces of n -gonal trapezohedron.

Now, setting the value of a in term of b in the eq(V), we have

$$
\begin{aligned}
& 8 R_{o}{ }^{2}=2 a^{2}+4 b^{2} \Rightarrow R_{o}{ }^{2}=\frac{a^{2}+2 b^{2}}{4} \\
& \Rightarrow R_{o}{ }^{2}=\frac{\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2}+2 b^{2}}{4}=\frac{b^{2} \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}+2 b^{2}}{4}=\frac{b^{2}\left(2+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}{4} \\
& \text { or } R_{o}=\frac{b}{2} \sqrt{2+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
\end{aligned}
$$

\therefore Outer radius of trapezohedron, $R_{o}=\frac{b}{2} \sqrt{2+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \quad \forall a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}$
Above is the required expression to calculate the outer (circumscribed) radius ($\boldsymbol{R}_{\boldsymbol{o}}$) of n-gonal trapezohedron having 2 n congruent right kite faces.

Surface Area ($\boldsymbol{A}_{\boldsymbol{s}}$) of n -gonal trapezohedron: Since, each of 2 n faces of a uniform polyhedron is a right kite hence the surface area of the trapezohedron is given as

$$
\begin{gathered}
\boldsymbol{A}_{s}=2 n \times(\text { Area of right kite face })=2 n \times(2 \times(\text { Area of right } \triangle A B C)) \quad(\text { see figure } 3 \text { above) } \\
=4 n \times\left(\frac{1}{2} a b\right)=2 n b\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)=2 n b^{2} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \\
\therefore \text { Surface area of trapezohedron, } \boldsymbol{A}_{s}=\mathbf{2 n \boldsymbol { b } ^ { 2 }} \sqrt{\tan \frac{\boldsymbol{\pi}}{\boldsymbol{n}} \tan \frac{\boldsymbol{\pi}}{\mathbf{2 n}}}
\end{gathered}
$$

Volume (\boldsymbol{V}) of n -gonal trapezohedron: Since, a trapezohedron has 2 n congruent faces each as a right kite hence the trapezohedron consists of $\mathbf{2 n}$ congruent elementary right pyramids each with right kite base (face). Hence the volume (V) of trapezohedron is given as (See figure 3 above)

$$
\begin{aligned}
V= & 2 n \times(\text { volume of elementary right pyramid with right kite face } A B C D) \\
= & 2 n\left\{\frac{1}{3} \times(\text { area of right kite face } A B C D) \times(\text { normal height })\right\}=\frac{2 n}{3}(a b) \times(h) \\
= & \frac{2 n b}{3}\left(b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \frac{b}{2}=\frac{n b^{3}}{3} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \\
& \therefore \text { Volume of trapezohedron, } V=\frac{\boldsymbol{n} b^{3}}{3} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
\end{aligned}
$$

Mean radius $\left(\boldsymbol{R}_{\boldsymbol{m}}\right)$ of \boldsymbol{n}-gonal trapezohedron: It is the radius of the sphere having a volume equal to that of a given n -gonal trapezohedron/deltohedron. It is calculated as follows
volume of sphere with mean radius $R_{m}=$ volume of given trapezohedron

$$
\begin{gathered}
\frac{4}{3} \pi\left(R_{m}\right)^{3}=\frac{n b^{3}}{3} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \\
\Rightarrow\left(R_{m}\right)^{3}=\frac{n b^{3}}{4 \pi} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \text { or } R_{m}=\left(\frac{n b^{3}}{4 \pi} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{\frac{1}{3}}=b\left(\frac{n}{4 \pi} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{\frac{1}{3}} \\
\therefore \boldsymbol{R}_{\boldsymbol{m}}=\boldsymbol{b}\left(\frac{\boldsymbol{n}}{\mathbf{4 \pi}} \sqrt{\tan \frac{\boldsymbol{\pi}}{\boldsymbol{n}} \tan \frac{\boldsymbol{\pi}}{2 \boldsymbol{n}}}\right)^{\frac{1}{3}}
\end{gathered}
$$

For finite values of a or b (known value) $\Rightarrow R_{i}<R_{m}<R_{o}$
We know that the n-gonal trapezohedron with right kite faces has two types of identical vertices. It has two identical \& diagonally opposite vertices at each of which n no. of right kite faces meet together \& rest $2 n$ are identical at each of which three right kite faces meet together. Thus we would analyse two cases to calculate solid angle subtended by the solid at its two dissimilar vertices by assuming that the eye of the observer is located at any of two dissimilar vertices \& directed (focused) to the centre of the n-gonal trapezohedron. Thus let's analyse both the cases as follows

Solid angle subtended by n-gonal trapezohedron at each of its two diagonally opposite vertices:

We know that n no. of congruent right kite faces meet at each of two diagonally opposite vertices of a n-gonal trapezohedron hence by assuming that the eye of the observer is located at one of two identical \& diagonally opposite vertices (See figure 5), the solid angle is calculated by using HCR's standard formula. According to which, solid angle (ω), subtended at the vertex (apex point) by a right pyramid with a regular n-gonal base $\&$ an angle α between any two consecutive lateral edges meeting at the same vertex, is mathematically given by the standard (generalized) formula as follows

Figure 5: The eye of the observer is located at two different vertices since the trapezohedron

$$
\omega=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}\right) \quad \forall n \in N \& n \geq 3
$$

We know that the acute angle of the right kite face is given as follows

$$
\alpha=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \Rightarrow \tan \frac{\alpha}{2}=\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
$$

Now, by setting the value of $\tan \frac{\alpha}{2}$ in the above formula, we get solid angle subtended by the (convex) trapezohedron solid at each of two diagonally opposite vertices as follows

$$
\begin{gathered}
\omega=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2}}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan \frac{\pi}{n}\left(\tan \frac{\pi}{n}-\tan \frac{\pi}{2 n}\right)}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan \frac{\pi}{n}\left(\frac{2 \tan \frac{\pi}{1-\tan ^{2} \frac{\pi}{2 n}}-\tan \frac{\pi}{2 n}}{2 n}\right)} \quad\left(\operatorname{since}, \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}\right)\right. \\
=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\left(\frac{2-1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\sqrt{\cos ^{2} \frac{\pi}{n} \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\left(\frac{1+\tan ^{2} \frac{\pi}{2 n}}{1-\tan ^{2} \frac{\pi}{2 n}}\right)}\right) \\
=2 \pi-2 n \sin ^{-1}\left(\sqrt{\cos ^{2} \frac{\pi}{n}\left(\frac{\sin \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right) \tan \frac{\pi}{2 n}\left(\frac{1}{\cos ^{\frac{\pi}{n}}}\right)}\right)=2 \pi-2 n \sin ^{-1}\left(\sqrt{\sin \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)
\end{gathered}
$$

Hence, the solid angle subtended by the n-gonal trapezohedron at each of two identical \& diagonally opposite vertices is given as follows

$$
\omega=2 \pi-2 n \sin ^{-1}\left(\sqrt{\sin \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \quad(\forall n \geq 3 \& n \uparrow \Rightarrow \omega \uparrow)
$$

The above expression shows that the solid angle subtended by the n-gonal trapezohedron at each of two identical \& diagonally opposite vertices is independent of the dimensions of n-gonal trapezohedron it depends only on the value of n i.e. no. of congruent right kite faces. Solid angle (ω) increase with the increase in the no. of faces $\mathbf{2 n}$.

Solid angle subtended by \mathbf{n}-gonal trapezohedron at each of $\mathbf{2 n}$ identical vertices:

We know that three congruent right kite faces meet together at each of $2 n$ identical vertices of an n-gonal trapezohedron hence by assuming that the eye of the observer is located at one of $2 n$ identical vertices (See the upper position of the observer's eye in figure 5 above) the solid angle is calculated by using formula of tetrahedron (as discussed in another paper). In this case, three edges meet together at each of 2 n identical vertices \& make the angles $90^{\circ}, 90^{\circ} \& \beta\left(=180^{\circ}-2 \alpha\right)$ with one another consecutively thus we have

$$
\alpha=90^{\circ}, \beta=90^{\circ} \& \gamma=180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\left(\gamma>90^{\circ}\right)
$$

Now, let's calculate the constant K by using the formula as follows

$$
\begin{aligned}
& K=\frac{2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\sqrt{4 \sin ^{2} \frac{\alpha}{2} \sin ^{2} \frac{\beta}{2}-\left(\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}-\sin ^{2} \frac{\gamma}{2}\right)^{2}}} \\
& \boldsymbol{K}=\frac{2 \sin \frac{90^{\circ}}{2} \sin \frac{90^{\circ}}{2} \sin \frac{\left(180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{2} \sqrt{\left.4 \sin ^{2} \frac{90^{\circ}}{2} \sin ^{2} \frac{90^{\circ}}{2}-\left(\sin ^{2} \frac{90^{\circ}}{2}+\sin ^{2} \frac{90^{\circ}}{2}-\sin ^{2} \frac{\left(180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{2}\right)\right)^{2}}}{\sqrt{2}} \\
& =\frac{2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right) \sin \left(90^{\circ}-\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{\sqrt{4\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\frac{1}{\sqrt{2}}\right)^{2}-\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-\sin ^{2}\left(90^{\circ}-\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)\right)^{2}}} \\
& =\frac{\cos \left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{\sqrt{1-\left(1-\cos ^{2}\left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)\right)^{2}}}=\frac{\cos \left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{\sqrt{1-\left(\sin ^{2}\left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)\right)^{2}}} \\
& =\frac{1}{\left.\sqrt{1+\sin ^{2}\left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right.}\right)}=\frac{1}{\sqrt{1+\left\{\sin \left(\sin ^{-1}\left(\frac{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\left.\sqrt{1+\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{2}}\right)}\right)\right)\right\}^{2}}} \\
& =\frac{1}{\sqrt{1+\left\{\frac{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right\}^{2}}}=\frac{1}{\sqrt{1+\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}}=\sqrt{\frac{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}
\end{aligned}
$$

$$
\therefore K=\sqrt{\frac{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}} \quad \forall n \geq 3 \Rightarrow 0<K<1
$$

Now, by substituting all the corresponding values, we get

$$
\begin{aligned}
& \Rightarrow \boldsymbol{\omega}_{\mathbf{1}}=\mathbf{2}\left[\sin ^{-1}\left(\frac{\sin \frac{\boldsymbol{\alpha}}{\boldsymbol{2}}}{\boldsymbol{K}}\right)-\boldsymbol{\operatorname { s i n }}^{-1}\left(\tan \frac{\boldsymbol{\alpha}}{\mathbf{2}} \sqrt{\left(\frac{\mathbf{1}}{\boldsymbol{K}}\right)^{2}-\mathbf{1}}\right)\right] \\
&=2\left[\sin ^{-1}\left(\frac{\sin \frac{90^{\circ}}{2}}{\left(\sqrt{\frac{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)}\right)-\sin ^{-1}\left(\tan \frac{90^{\circ}}{2}\left(\sqrt{\left(\sqrt{\frac{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)}\right)^{2}\right)\right. \\
&=2\left[\sin ^{-1}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)-\sin ^{-1}\left(\sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right] \\
&=2\left[\sin ^{-1}\left(\sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{2+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)-\sin ^{-1}\left(\sqrt{\left.\left.\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right]}\right]\right. \\
&= 2\left[\operatorname { s i n } ^ { - 1 } \left(\sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{2+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}} \sqrt{\frac{1}{1+\tan \frac{\pi}{n}} \tan \frac{\pi}{2 n}}-\sqrt{\left.\left.\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\frac{1}{2+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right]}\right.\right. \\
&=2\left[\sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right)\right]=2 \sin { }^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right)
\end{aligned}
$$

Similarly, we can find out the value of solid angle $\boldsymbol{\omega}_{2}$ (which is equal to $\boldsymbol{\omega}_{1}$) as follows

$$
\begin{gathered}
\Rightarrow \omega_{2}=\omega_{1}=2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right) \\
\text { Now, } \omega_{3}=2\left[\sin ^{-1}\left(\frac{\sin \frac{\gamma}{2}}{K}\right)-\sin ^{-1}\left(\tan \frac{\gamma}{2} \sqrt{\left(\frac{1}{K}\right)^{2}-1}\right)\right]
\end{gathered}
$$

Note: For detailed discussion, go through the paper 'Mathematical Analysis of Tetrahedron by HCR'

$$
\begin{aligned}
& =2\left[\operatorname { s i n } ^ { - 1 } \left(\frac{\left.\sin \frac{\left(180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{\left(\sqrt{\frac{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)}\right]}{(\sqrt{2})}\right.\right. \\
& -\sin ^{-1}\left(\tan \frac{\left(180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{2} \sqrt{\left(\sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)^{2}-1}\right) \\
& =2\left[\sin ^{-1}\left(\cos \left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right) \sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right. \\
& \left.-\sin ^{-1}\left(\cot \left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right) \sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-1}\right)\right] \\
& =2\left[\sin ^{-1}\left(\cos \left(\cos ^{-1}\left(\frac{1}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right) \sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right. \\
& \left.-\sin ^{-1}\left(\cot \left(\cot ^{-1}\left(\frac{1}{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right) \sqrt{\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right] \\
& =2\left[\sin ^{-1}\left(\frac{1}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}} \sqrt{\frac{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)-\sin ^{-1}\left(\frac{1}{\left.\left.\left.\left.\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right] .\right] .\right] ~}\right.\right. \\
& =2\left[\sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right] \\
& =2\left[\sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}-\frac{1}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}} \sqrt{\frac{\tan ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{2}}}\right)\right] \\
& =2\left[\sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}-\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right)\right]
\end{aligned}
$$

$$
\omega_{3}=2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right)
$$

The largest angle of parametric triangle is C which is calculated by using cosine formula as follows

$$
\begin{aligned}
& C=\cos ^{-1}\left(\frac{\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}-\sin ^{2} \frac{\gamma}{2}}{2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2}}\right)=\cos ^{-1}\left(\frac{\sin ^{2} \frac{90^{o}}{2}+\sin ^{2} \frac{90^{\circ}}{2}-\sin ^{2} \frac{\gamma}{2}}{2 \sin \frac{90^{\circ}}{2} \sin \frac{90^{0}}{2}}\right) \\
&=\cos ^{-1}\left(\frac{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-\sin ^{2} \frac{\gamma}{2}}{2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)}\right)=\cos ^{-1}\left(1-\sin ^{2} \frac{\gamma}{2}\right)=\cos ^{-1}\left(\cos ^{2} \frac{\gamma}{2}\right) \\
&=\cos ^{-1}\left(\cos ^{2} \frac{\left(180^{\circ}-2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)}{2}\right)=\cos ^{-1}\left(\sin ^{2}\left(\tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)\right)\right) \\
&\left.=\cos ^{-1}\left(\left(\sin \left(\sin ^{-1}\left(\frac{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)\right)\right)\right)^{2}\right)=\cos ^{-1}\left(\left(\frac{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)^{2}\right) \\
& C=\cos ^{-1}\left(\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right) \quad \Rightarrow \mathbf{0}<\left(\frac{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\mathbf{1}+\boldsymbol{\operatorname { t a n } \frac { \pi } { n } \operatorname { t a n } \frac { \pi } { 2 n }}}\right)<\mathbf{1} \quad \forall \boldsymbol{n} \geq \mathbf{3} \\
& \therefore \boldsymbol{C}<\mathbf{9 0}
\end{aligned}
$$

Hence, the parametric triangle is an acute angled triangle.
Hence the foot of perpendicular (F.O.P.) drawn from the vertex of a tetrahedron to the plane of parametric triangle will lie within its boundary hence, the solid angle subtended by the n-gonal trapezohedron at the vertex is the sum of the magnitudes of solid angles as follows

$$
\begin{gathered}
\omega=\omega_{1}+\omega_{2}+\omega_{3} \\
=2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right)+2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right) \\
+2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =4 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right) \\
& \quad+2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right)
\end{aligned}
$$

Hence, the solid angle subtended by the n-gonal trapezohedron at each of $2 n$ identical vertices (at each of which three right kite faces meet together) is given as follows

$$
\omega=4 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right)+2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right)
$$

The above formula is equally applicable for any arbitrary value of n (i.e. a natural number ≥ 3).
Dihedral angles between the adjacent right kite faces: We know that there are two unequal edges a \& b of each of 2 n right kite faces which are common (shared) between two adjacent right kite faces. Hence there are two cases of common edge (side) 1. Smaller common edge \& 2. Larger common edge. In order to calculate dihedral angles between the adjacent right kite faces with a common edge in an n-gonal trapezohedron, let's consider both the cases one-by-one as follows
a. Dihedral angle between the adjacent right kite faces having smaller common edge:

In this case, consider any two adjacent right kite faces sharing a smaller common edge (as denoted by the point M normal to the plane of paper in the figure 6) each at a normal distance $00^{\prime}=h$ from the centre O of the uniform polyhedron. Now

In right $\triangle O O^{\prime} \mathrm{M}$

$$
\begin{aligned}
& \Rightarrow \tan \left\llcorner O M O^{\prime}=\frac{O O^{\prime}}{M O^{\prime}} \Rightarrow \tan \theta=\frac{h}{\left(\frac{b}{2}\right)}\right. \\
& \theta=\tan ^{-1}\left(\frac{\frac{b}{2}}{\frac{b}{2}}\right)=\tan ^{-1}(1)=45^{\circ} \quad\left(\text { since }, \quad h=\frac{b}{2}\right)
\end{aligned}
$$

Hence, the dihedral angle between any two adjacent right kite faces meeting at smaller common edge (a) is given as

Figure 6: Two adjacent right kite faces sharing a smaller common edge of length a denoted by the point M normal to the plane of paper.

$$
2 \theta=2\left(45^{\circ}\right)=90^{\circ}
$$

Above value of dihedral angle indicates that each two adjacent right kite faces meet at right angle (90 ${ }^{\boldsymbol{o}}$) at the smaller edge (side) of n-gonal trapezohedron which is independent on the no. of faces (2n) \& edge lengths $\boldsymbol{a} \& \boldsymbol{b}$ in any n-gonal trapezohedron with congruent right kite faces.

b. Dihedral angle between the adjacent right kite faces having larger common edge:

In this case, consider any two adjacent right kite faces meeting at larger common edge (as denoted by the point N normal to the plane of paper in the figure 7 below) each at a normal distance $O O^{\prime}=h$ from the centre O of the n -gonal trapezohedron. Now

In right $\Delta O O^{\prime} N$

$$
\begin{aligned}
& \Rightarrow \tan \angle O N O^{\prime}=\frac{O O^{\prime}}{N O^{\prime}} \Rightarrow \tan \theta=\frac{h}{\left(\frac{a}{2}\right)} \\
& \begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\frac{b}{2}}{\frac{a}{2}}\right)=\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}\left(\frac{b}{b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right) \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}\right)=\tan ^{-1}\left(\sqrt{\cot \frac{\pi}{n} \cot \frac{\pi}{2 n}}\right)
\end{aligned}
\end{aligned}
$$

Hence, the dihedral angle between any two adjacent right kite faces sharing larger common edge (i.e. b) is given as

Figure 7: Two adjacent right kite faces sharing a larger common edge of length b denoted by the point N normal to the plane of paper.

$$
2 \theta=2 \tan ^{-1}\left(\sqrt{\cot \frac{\pi}{n} \cot \frac{\pi}{2 n}}\right)
$$

Above value of dihedral angle indicates that each two adjacent right kite faces meet at an angle (20) at the larger edge (side) of n-gonal trapezohedron which is dependent on the no. of faces ($2 n$) but doesn't depend on the edge lengths $\boldsymbol{a} \& \boldsymbol{b}$ in any uniform polyhedron with congruent right kite faces.

Construction of a solid n-gonal trapezohedron: In order to construct a solid n-gonal trapezohedron having 2 n congruent faces each as a right kite with two pairs of unequal sides (edges) $a \& b$ while one of them is required to be known for calculating important dimensions of polyhedron.

Step 1: First we construct right kite base (face) with the help of known values of $a \& b$ while one of these is required to be known while other unknown side (edge) is calculated by the following relations of $a \& b$

$$
a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
$$

Step 2: Construct all its 2 n congruent elementary right pyramids with right kite base (face) of a normal height h given as (See figure 3 above)

$$
h=\frac{b}{2} \quad \forall a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
$$

Step 2: paste/bond by joining all $2 n$ elementary right pyramids by overlapping their lateral faces \& keeping their apex points coincident with each other such that n right-kite faces meet at each of two identical \& diagonally opposite vertices and three right kite faces meet at each of rest 2 n identical vertices. Thus, a solid n -gonal trapezohedron, with 2 n congruent faces each as a right kite with two pairs of unequal sides of $a \& b$, is obtained.

Important deductions: We can analyse any n-gonal trapezohedron having 2 n congruent right kite faces by setting values of no. of faces n meeting at each of its two identical \& diagonally opposite vertices as follows

1. n-gonal trapezohedron having least no. of right kite faces $(\boldsymbol{n}=3)$

By setting $n=3$ in all above generalized formula of n-gonal trapezohedron, we can calculate various important parameters.

$$
\begin{aligned}
& \text { no.of congruent right kite faces }=2 n=2(3)=6 \\
& \text { no.of edges }=4 n=4(3)=12 \quad \& \quad \text { no.of vertices }=2 n+2=2(3)+2=8
\end{aligned}
$$

Now by setting $n=3$, we get ratio between unequal sides (edges) $a \& b$ as follows

$$
a=b \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}=b \sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}=b \sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}=b \sqrt{1}=b \Rightarrow a=b
$$

Thus, above result shows that the trapezohedron is a solid having 6 congruent right kite faces

$$
\therefore \text { acute angle, } \alpha=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}\right)=2 \tan ^{-1}\left(\sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}\right)
$$

$$
=2 \tan ^{-1}(1)=90^{\circ}
$$

$\Rightarrow \alpha=\beta=180^{\circ}-\alpha=90^{\circ}$
All the angles of each right kite face are right angles hence all 6 congruent right kite faces are square faces. Hence the polyhedron is a hexahedron or cube (figure 8)

$$
\begin{aligned}
& \therefore \text { Surface area of trapezohedron, } A_{s}=2 n b^{2} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \\
& \begin{array}{r}
=2(3) b^{2} \sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}=6 b^{2} \sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)} \\
=6 b^{2}(\text { surface area of } a \text { cube with each side } b)
\end{array}
\end{aligned}
$$

Figure 8: A trapezohedron with 8 vertices, 12 edges \& 6 congruent right kite faces is a hexahedron (cube) ABCDEFGH
\therefore Volume of trapezohedron, $V=\frac{n b^{3}}{3} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}=\frac{(3) b^{3}}{3} \sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}=b^{3} \sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}$

$$
=b^{3}(\text { volume of a cube with each side } b)
$$

Hence, the solid angle subtended by n-gonal trapezohedron at each of its two identical \& diagonally opposite vertices is given as follows

$$
\begin{aligned}
\boldsymbol{\omega} & =2 \pi-2 n \sin ^{-1}\left(\sqrt{\sin \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)=2 \pi-2(3) \sin ^{-1}\left(\sqrt{\sin \frac{\pi}{3} \tan \frac{\pi}{6}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\sqrt{\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{3}}\right)}\right)=2 \pi-6 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=2 \pi-6\left(\frac{\pi}{4}\right)=\frac{\pi}{2} \boldsymbol{s r}
\end{aligned}
$$

Hence, the solid angle subtended by \mathbf{n}-gonal trapezohedron at each of its $\mathbf{2 n}$ identical vertices is given as follows

$$
\begin{aligned}
& \omega=4 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}}{\sqrt{2}\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)}\right) \\
& +2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{n} \tan \frac{\pi}{2 n}} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}-\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}{\left(1+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}\right)^{\frac{3}{2}}}\right) \\
& =4 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{3} \tan \frac{\pi}{6}}-\sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}}{\sqrt{2}\left(1+\tan \frac{\pi}{3} \tan \frac{\pi}{6}\right)}\right) \\
& +2 \sin ^{-1}\left(\frac{\sqrt{1+2 \tan \frac{\pi}{3} \tan \frac{\pi}{6}} \sqrt{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}-\tan \frac{\pi}{3} \tan \frac{\pi}{6}}{\left(1+\tan \frac{\pi}{3} \tan \frac{\pi}{6}\right)^{\frac{3}{2}}}\right) \\
& =4 \sin ^{-1}\left(\frac{\sqrt{1+2(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}-\sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}}{\sqrt{2}\left(1+(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)\right)}\right) \\
& +2 \sin ^{-1}\left(\frac{\sqrt{1+2(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)} \sqrt{(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}-(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)}{\left(1+(\sqrt{3})\left(\frac{1}{\sqrt{3}}\right)\right)^{\frac{3}{2}}}\right) \\
& =4 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+2 \sin ^{-1}\left(\frac{\sqrt{3}-1}{(2)^{\frac{3}{2}}}\right)=4 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+2 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right) \\
& \left.=6 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)=\frac{\pi}{2} \boldsymbol{s r} \text { (solid angle subtended by a cube at its each vertex }\right)
\end{aligned}
$$

Hence, the dihedral angle between any two adjacent right kite faces meeting at larger common edge (b) is given as

$$
\begin{gathered}
2 \theta=2 \tan ^{-1}\left(\sqrt{\cot \frac{\pi}{n} \cot \frac{\pi}{2 n}}\right)=2 \tan ^{-1}\left(\sqrt{\cot \frac{\pi}{3} \cot \frac{\pi}{6}}\right)=2 \tan ^{-1}\left(\sqrt{\left(\frac{1}{\sqrt{3}}\right)(\sqrt{3})}\right)=2 \tan ^{-1}(1) \\
=90^{\circ} \text { (angle between any two square faces of a hexahedron or cube) }
\end{gathered}
$$

Hence, from all above results obtained by the generalised formula it's shown that the n-gonal trapezohedron with 6 congruent right kite faces is a hexahedron or cube. Thus the generalised formula are verified which are equally applicable on any n-gonal trapezohedron with congruent right kite faces. Thus it is clear that there are infinite no. of n-gonal trapezohedron having congruent right kite faces which can be analysed by setting $n=3,4,5,6,7, \ldots \ldots \ldots \ldots \ldots$ to analytically compute all the important
parameters such as ratio of unequal sides, outer radius, inner radius, mean radius, surface area, volume, solid angles subtended at the vertices, dihedral angles between the adjacent right kite faces etc.

Conclusions: Let there be any n-gonal trapezohedron/deltohedron having $(2 n+2)$ vertices, $4 n$ edges $\& 2 n$ congruent faces each as a right kite with two pairs of unequal sides (edges) of $\boldsymbol{a} \& \boldsymbol{b}$ then all its important parameters are determined as tabulated below

Inner (inscribed) radius $\left(\boldsymbol{R}_{\boldsymbol{i}}\right)$	$R_{i}=\frac{b}{2}$
Outer (circumscribed) radius $\left(\boldsymbol{R}_{\boldsymbol{o}}\right)$	$R_{o}=\frac{b}{2} \sqrt{2+\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}$
Mean radius $\left(\boldsymbol{R}_{\boldsymbol{m}}\right)$	$R_{m}=b\left(\frac{n}{4 \pi} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)^{\frac{1}{3}}$
Surface area $\left(\boldsymbol{A}_{\boldsymbol{s}}\right)$	$A_{s}=2 n b^{2} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}$
Volume (\boldsymbol{V})	$V=\frac{n b^{3}}{3} \sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}$

An n-gonal trapezohedron has two unequal sides (edges) $a \& b$ in a ratio given as

$$
\frac{a}{b}=\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}
$$

Each right kite face of n-gonal trapezohedron has one acute angle α given as follows

$$
\alpha=2 \tan ^{-1}\left(\sqrt{\tan \frac{\pi}{n} \tan \frac{\pi}{2 n}}\right)
$$

\& two right angles \& one obtuse angle $\beta\left(\forall \beta=180^{\circ}-\alpha\right)$

Note: Above articles had been developed \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

April, 2015

Email: rajpootharishchandra@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

