Reflection of a point about a line \& a plane in 3-D space

Mr Harish Chandra Rajpoot

M.M.M. University of Technology, Gorakhpur-273010 (UP), India

12/5/2015

Introduction: Here, we are interested to find out general expressions to calculate the co-ordinates of a point which is the reflection of a give point about a line in 2-D co-ordinate system and about a line \& a plane in 3-D co-ordinate system as well as the foot of perpendicular to a line \& a plane by using simple geometry.

Reflection of a point about a line in 2-D co-ordinate system: Let there be any arbitrary point say $\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{o}}, \boldsymbol{y}_{\boldsymbol{o}}\right)$ \& a straight line AB: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$. Now, assume that the point $\boldsymbol{P}^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ is the reflection of the given point \mathbf{P} about the given straight line $\mathbf{A B}$ (See the figure 1 below) then we have the following two conditions to be satisfied

1. The mid-point M of the line joining the points $P\left(x_{o}, y_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ must lie on the line AB
2. The line joining the points $P\left(x_{o}, y_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ must be normal to the line AB

Now, we would apply both the above conditions to find out the co-ordinates of the point $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$. Co-ordinates of the midpoint M of the line $P P^{\prime}$ are calculated as

$$
M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}\right)
$$

The mid-point M (i.e. foot of perpendicular from point P to the line $A B$) will satisfy the equation of straight line $A B$ as follows

$$
\begin{array}{r}
\frac{y^{\prime}+y_{o}}{2}=m\left(\frac{x^{\prime}+x_{o}}{2}\right)+c \\
y^{\prime}+y_{o}=m\left(x^{\prime}+x_{o}\right)+2 c \quad \ldots \ldots \ldots \tag{1}
\end{array}
$$

Since, the straight lines $P P^{\prime} \& A B$ are normal to each other hence we have the following condition
$\left(\right.$ slope of $\left.P P^{\prime}\right) \times($ slope of $A B)=-1$

$$
\begin{aligned}
\left(\frac{y^{\prime}-y_{o}}{x^{\prime}-x_{o}}\right) \times(m) & =-1 \Rightarrow y^{\prime}-y_{o}=-\frac{x^{\prime}-x_{o}}{m} \\
y^{\prime} & =y_{o}-\frac{x^{\prime}-x_{o}}{m} \quad \cdots \ldots \ldots \ldots \ldots
\end{aligned}
$$

Figure 1: Point $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is the reflection of point $P\left(x_{o}, y_{o}\right)$ about the line AB: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$

Now, substituting the value of y^{\prime} from eq(2) in the eq(1), we get

$$
\begin{gathered}
y_{o}-\frac{x^{\prime}-x_{o}}{m}+y_{o}=m\left(x^{\prime}+x_{o}\right)+2 c \Rightarrow 2 m y_{o}-x^{\prime}+x_{o}=m^{2} x^{\prime}+m^{2} x_{o}+2 m c \\
\left(1+m^{2}\right) x^{\prime}=\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right) \Rightarrow x^{\prime}=\frac{\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right)}{1+m^{2}} \\
\therefore \boldsymbol{x}^{\prime}=\frac{\left(\mathbf{1}-\boldsymbol{m}^{2}\right) \boldsymbol{x}_{\boldsymbol{o}}+\mathbf{2 m}\left(\boldsymbol{y}_{o}-\boldsymbol{c}\right)}{\mathbf{1}+\boldsymbol{m}^{2}}
\end{gathered}
$$

Substituting the value of x^{\prime} in the eq(2), we get y co-ordinate as follows

$$
\begin{gathered}
y^{\prime}=y_{o}-\frac{\frac{\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right)}{1+m^{2}}-x_{o}}{m}=y_{o}-\frac{\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right)-\left(1+m^{2}\right) x_{o}}{m\left(1+m^{2}\right)} \\
=y_{o}-\frac{2 m\left(y_{o}-c\right)-2 m^{2} x_{o}}{m\left(1+m^{2}\right)}=\frac{m\left(y_{o}+m^{2} y_{o}-2 y_{o}+2 c\right)+2 m^{2} x_{o}}{m\left(1+m^{2}\right)}=\frac{m^{2} y_{o}-y_{o}+2 c+2 m x_{o}}{1+m^{2}} \\
=\frac{2 m x_{o}-\left(1-m^{2}\right) y_{o}+2 c}{1+m^{2}} \\
\therefore \quad \boldsymbol{y}^{\prime}=\frac{\mathbf{2 m} \boldsymbol{x}_{\boldsymbol{o}}-\left(\mathbf{1}-\boldsymbol{m}^{2}\right) \boldsymbol{y}_{o}+\mathbf{2} \boldsymbol{c}}{\mathbf{1}+\boldsymbol{m}^{2}}
\end{gathered}
$$

Hence, the point of reflection $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is given as

$$
P^{\prime} \equiv\left(\frac{\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right)}{1+m^{2}}, \frac{2 m x_{o}-\left(1-m^{2}\right) y_{o}+2 c}{1+m^{2}}\right)
$$

Foot of perpendicular: Foot of perpendicular drawn from the point $P\left(x_{o}, y_{o}\right)$ to the line $\mathrm{AB}: y=m x+c$ can be easily determined simply by setting the values of $\mathrm{x}^{\prime} \& \mathrm{y}^{\prime}$ in the co-ordinates of point M as follows

$$
\begin{aligned}
& M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}\right) \equiv\left(\frac{\frac{\left(1-m^{2}\right) x_{o}+2 m\left(y_{o}-c\right)}{1+m^{2}}+x_{o}}{2}, \frac{\frac{2 m x_{o}-\left(1-m^{2}\right) y_{o}+2 c}{\left(1+m^{2}\right)}+y_{o}}{2}\right) \\
& \therefore \boldsymbol{M} \equiv\left(\frac{\boldsymbol{x}_{\boldsymbol{o}}+\boldsymbol{m}\left(\boldsymbol{y}_{\boldsymbol{o}}-\boldsymbol{c}\right)}{\mathbf{1}+\boldsymbol{m}^{2}}, \frac{\boldsymbol{m} \boldsymbol{x}_{\boldsymbol{o}}+\boldsymbol{m}^{2} \boldsymbol{y}_{\boldsymbol{o}}+\boldsymbol{c}}{\mathbf{1}+\boldsymbol{m}^{2}}\right)
\end{aligned}
$$

Note: If the line AB is passing through two points $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$ then the equation of the line given as

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \Rightarrow y=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x+\left(y_{1}-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{1}\right)
$$

Now, in order to find out the point of reflection \& the foot of perpendicular, simply substitute the following values in above co-ordinates of point $P^{\prime} \& M$ as follows

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \& c=y_{1}-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{1}
$$

Reflection of a point about a line in 3-D co-ordinate system: Let there be any arbitrary point say $\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{o}}, \boldsymbol{y}_{o}, \boldsymbol{z}_{\boldsymbol{o}}\right)$ \& a straight line $A B$ having equation

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}=k(\text { any arbitrary constant })
$$

Now, assume that the point $\boldsymbol{P}^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}, \boldsymbol{z}^{\prime}\right)$ is the reflection of the given point P about the given straight line $A B$ (See the figure 2 below) then we have the following two conditions to be satisfied

1. The mid-point M of the line joining the points $P\left(x_{o}, y_{o}, z_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ must lie on the line $A B$
2. The line joining the points $P\left(x_{o}, y_{o}, z_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ must be normal to the line AB

Now, we would apply both the above conditions to find out the co-ordinates of the point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Co-ordinates of the mid-point M of the line $P P^{\prime}$ are calculated as

$$
M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}, \quad \frac{z^{\prime}+z_{o}}{2}\right)
$$

The mid-point M (i.e. foot of perpendicular from point P to the line $A B$) will satisfy the equation of straight line $A B$ as follows

$$
\begin{aligned}
& \frac{x^{\prime}+x_{o}}{2}=k a+x_{1} \Rightarrow \boldsymbol{x}^{\prime}=\mathbf{2}\left(\boldsymbol{k} \boldsymbol{a}+\boldsymbol{x}_{\mathbf{1}}\right)-\boldsymbol{x}_{\boldsymbol{o}} \\
& \frac{y^{\prime}+y_{o}}{2}=k b+y_{1} \Rightarrow \boldsymbol{y}^{\prime}=\mathbf{2}\left(\boldsymbol{k} \boldsymbol{b}+\boldsymbol{y}_{\mathbf{1}}\right)-\boldsymbol{y}_{o} \\
& \frac{z^{\prime}+z_{o}}{2}=k c+z_{1} \Rightarrow \quad \mathbf{z}^{\prime}=\mathbf{2}\left(\boldsymbol{k} \boldsymbol{c}+\boldsymbol{z}_{\mathbf{1}}\right)-\boldsymbol{z}_{o}
\end{aligned}
$$

Since, the straight lines $P P^{\prime} \& A B$ are normal to each other hence we have the following condition of normal direction ratios of lines $P P^{\prime} \& A B$

Figure 2: Point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is the reflection of the point $P\left(x_{o}, y_{o}, z_{o}\right)$ about the line $A B$

sum of products of the corresponding direction ratios of the lines $P P^{\prime} \& A B=0$

$$
\Rightarrow a\left(x^{\prime}-x_{o}\right)+b\left(y^{\prime}-y_{o}\right)+c\left(z^{\prime}-z_{o}\right)=0
$$

Now, setting the values of $x^{\prime}, y^{\prime} \& z^{\prime}$ in the above expression, we get

$$
\begin{gathered}
a\left(2\left(k a+x_{1}\right)-x_{o}-x_{o}\right)+b\left(2\left(k b+y_{1}\right)-y_{o}-y_{o}\right)+c\left(2\left(k c+z_{1}\right)-z_{o}-z_{o}\right)=0 \\
\left(a^{2}+b^{2}+c^{2}\right) k+a\left(x_{1}-x_{o}\right)+b\left(y_{1}-y_{o}\right)+c\left(z_{1}-z_{o}\right)=0 \\
\boldsymbol{k}=\frac{\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{o}}-\boldsymbol{x}_{\mathbf{1}}\right)+\boldsymbol{b}\left(\boldsymbol{y}_{o}-\boldsymbol{y}_{\mathbf{1}}\right)+\boldsymbol{c}\left(\boldsymbol{z}_{o}-\boldsymbol{z}_{1}\right)}{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}}
\end{gathered}
$$

By substituting the value of k in the above expressions, the co-ordinates of the point of reflection $\boldsymbol{P}^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}, \boldsymbol{z}^{\prime}\right)$ are calculated as follows

$$
\begin{aligned}
& x^{\prime}=2 a\left(\frac{a\left(x_{o}-x_{1}\right)+b\left(y_{o}-y_{1}\right)+c\left(z_{o}-z_{1}\right)}{a^{2}+b^{2}+c^{2}}\right)+2 x_{1}-x_{o} \\
& y^{\prime}=2 b\left(\frac{a\left(x_{o}-x_{1}\right)+b\left(y_{o}-y_{1}\right)+c\left(z_{o}-z_{1}\right)}{a^{2}+b^{2}+c^{2}}\right)+2 y_{1}-y_{o} \\
& z^{\prime}=2 c\left(\frac{a\left(x_{o}-x_{1}\right)+b\left(y_{o}-y_{1}\right)+c\left(z_{o}-z_{1}\right)}{a^{2}+b^{2}+c^{2}}\right)+2 z_{1}-z_{o}
\end{aligned}
$$

Foot of perpendicular: Foot of perpendicular drawn from the point $P\left(x_{o}, y_{o}, z_{o}\right)$ to the line AB can be easily determined simply by setting the values of $x^{\prime}, y^{\prime} \& z^{\prime}$ in the co-ordinates of point M given as follows

$$
M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}, \frac{z^{\prime}+z_{o}}{2}\right)
$$

Note: If the line AB is passing through two points $\left(x_{1}, y_{1}, z_{1}\right) \&\left(x_{2}, y_{2}, z_{2}\right)$ then the equation of the line given as

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}=k(\text { any arbitrary constant })
$$

Now, in order to find out the point of reflection \& the foot of perpendicular, simply substitute the following values of direction ratios of the lien in above co-ordinates of point $P^{\prime} \& M$ as follows

$$
a=x_{2}-x_{1}, \quad b=y_{2}-y_{1} \& z=z_{2}-z_{1}
$$

Reflection of a point about a plane in 3-D co-ordinate system: Let there be any arbitrary point say $\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{o}}, \boldsymbol{y}_{o}, \boldsymbol{z}_{\boldsymbol{o}}\right) \&$ a plane: $\boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c z}+\boldsymbol{d}=\mathbf{0}$

Now, assume that the point $\boldsymbol{P}^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}, \boldsymbol{z}^{\prime}\right)$ is the reflection of the given point \mathbf{P} about the given plane (See the figure 3 below) then we have the following two conditions to be satisfied

1. The mid-point M of the line joining the points $P\left(x_{o}, y_{o}, z_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ must lie on the plane
2. The line joining the points $P\left(x_{o}, y_{o}, z_{o}\right) \& P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ must be parallel to normal to the plane

Now, we would apply both the above conditions to find out the co-ordinates of the point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Co-ordinates of the mid-point M of the line PP are calculated as

$$
M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}, \frac{z^{\prime}+z_{o}}{2}\right)
$$

The mid-point M (i.e. foot of perpendicular from point P to the plane) will satisfy the equation of plane as follows

$$
\begin{array}{r}
a\left(\frac{x^{\prime}+x_{o}}{2}\right)+b\left(\frac{y^{\prime}+y_{o}}{2}\right)+c\left(\frac{z^{\prime}+z_{o}}{2}\right)+d=0 \\
a x^{\prime}+b y^{\prime}+c z^{\prime}+a x_{o}+b y_{o}+c z_{o}+2 d=0 \tag{3}
\end{array}
$$

Since, the straight lines PP \& normal to the plane are parallel to each other hence we have the following condition of parallel direction ratios of line $P^{\prime} \&$ normal to the plane

Figure 3: Point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is the reflection of the point $P\left(x_{o}, y_{o}, z_{o}\right)$ about the plane: $a x+b y+c z+d=0$
ratios of corresponding direction ratios of two parallel lines are equal

$$
\begin{aligned}
& \Rightarrow \frac{\boldsymbol{x}^{\prime}-\boldsymbol{x}_{o}}{\boldsymbol{a}}=\frac{\boldsymbol{y}^{\prime}-\boldsymbol{y}_{o}}{\boldsymbol{b}}=\frac{\boldsymbol{z}^{\prime}-\boldsymbol{z}_{o}}{\boldsymbol{c}}=k \text { (let any constant) } \\
& \Rightarrow \boldsymbol{x}^{\prime}=\boldsymbol{a} \boldsymbol{k}+\boldsymbol{x}_{o}, \quad \boldsymbol{y}^{\prime}=\boldsymbol{b} \boldsymbol{k}+\boldsymbol{y}_{o} \quad \& \quad \boldsymbol{z}^{\prime}=\boldsymbol{c k}+\boldsymbol{z}_{o}
\end{aligned}
$$

Now, substituting the values of $x^{\prime}, y^{\prime} \& z^{\prime}$ in the equation (3), we get

$$
a\left(a k+x_{o}\right)+b\left(b k+y_{o}\right)+c\left(c k+z_{o}\right)+a x_{o}+b y_{o}+c z_{o}+2 d=0
$$

$$
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}\right) k+2\left(a x_{o}+b y_{o}+c z_{o}+d\right)=0 \\
\boldsymbol{k}=\frac{-\mathbf{2}\left(\boldsymbol{a} \boldsymbol{x}_{\boldsymbol{o}}+\boldsymbol{b} \boldsymbol{y}_{\boldsymbol{o}}+\boldsymbol{c} \boldsymbol{z}_{\boldsymbol{o}}+\boldsymbol{d}\right)}{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}}
\end{gathered}
$$

By substituting the value of k in the above expressions, the co-ordinates of the point of reflection $\boldsymbol{P}^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}, \boldsymbol{z}^{\prime}\right)$ are calculated as follows

$$
\begin{aligned}
& x^{\prime}=x_{o}-\frac{2 a\left(a x_{o}+b y_{o}+c z_{o}+d\right)}{a^{2}+b^{2}+c^{2}} \\
& y^{\prime}=y_{o}-\frac{2 b\left(a x_{o}+b y_{o}+c z_{o}+d\right)}{a^{2}+b^{2}+c^{2}} \\
& z^{\prime}=z_{o}-\frac{2 c\left(a x_{o}+b y_{o}+c z_{o}+d\right)}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

Foot of perpendicular: Foot of perpendicular drawn from the point $P\left(x_{o}, y_{o}, z_{o}\right)$ to the plane can be easily determined simply by setting the values of $x^{\prime}, y^{\prime} \& z^{\prime}$ in the co-ordinates of point M given as follows

$$
M \equiv\left(\frac{x^{\prime}+x_{o}}{2}, \frac{y^{\prime}+y_{o}}{2}, \frac{z^{\prime}+z_{o}}{2}\right)
$$

Conclusion: Thus, the reflection of any point about a line in 2-D co-ordinate system and about a line \& a plane in 3-D co-ordinate system can be easily determined simply by applying the above procedures or by using above formula. These are also useful to determine the foot of perpendicular drawn from a point to a line or a plane in 3-D space. All these articles/derivations are based on the applications of simple geometry.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India

May, 2015
Email: rajpootharishchandra@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

