Solid angle subtended by a beam with rectangular profile emitted by uniformly radiating

point-source given horizontal \& vertical beam angles

Mr Harish Chandra Rajpoot
 M.M.M. University of Technology, Gorakhpur-273010 (UP), India
 18/5/2015

Introduction: Here, we are interested to find out the general expressions for calculating the solid angle subtended by a beam, having a rectangular profile, emitted by a uniformly radiating point-source given horizontal \& vertical beam angles $\boldsymbol{\theta}_{\boldsymbol{H}} \& \boldsymbol{\theta}_{\boldsymbol{V}}$ respectively measured in two centralised orthogonal (horizontal \& vertical) planes passing through the point-source, as well as for the given values of lateral beam angles $\boldsymbol{\alpha} \& \boldsymbol{\beta}$ measured between the adjacent lateral beam rays (passing through the vertices of rectangular profile) originated from the point-source (As shown in the figure 1) by using the standard formula of solid angle of a rectangular plane. This standard formula had already been derived by the author in his paper "HCR's Theory of Polygon". Subsequently, both the cases will be discussed \& analysed in an order.

1. Solid angle subtended by the beam with

rectangular profile given horizontal \& vertical beam angles $\boldsymbol{\theta}_{\boldsymbol{H}} \& \boldsymbol{\theta}_{\boldsymbol{V}}$: Let there be a beam with rectangular profile radiated from a uniform point-source S such that $\theta_{H} \& \theta_{V}$ are (plane) angles subtended by the beam in the centralised horizontal \& vertical planes respectively passing through the point-source S. Now, consider an imaginary rectangular plane $A B C D$ with centre O, length $l \&$ width b at a normal distance $O S=h$ from the uniform point-source S (As shown in the figure 2)

In right $\triangle S O P$

$$
\begin{aligned}
& \tan \angle O S P=\frac{O P}{O S} \Rightarrow \tan \frac{\angle P S Q}{2}=\frac{O P}{O S} \\
& \quad \Rightarrow \tan \frac{\theta_{H}}{2}=\frac{\frac{l}{2}}{h} \Rightarrow \boldsymbol{l}=\mathbf{2 h} \boldsymbol{t a n} \frac{\boldsymbol{\theta}_{H}}{\mathbf{2}}
\end{aligned}
$$

Similarly, in right $\triangle S O M$

$$
\begin{aligned}
& \tan \angle O S M=\frac{O M}{O S} \Rightarrow \tan \frac{\angle M S N}{2}=\frac{O M}{O S} \\
& \Rightarrow \tan \frac{\theta_{V}}{2}=\frac{\frac{b}{2}}{h} \Rightarrow \boldsymbol{b}=2 \boldsymbol{h} \tan \frac{\boldsymbol{\theta}_{V}}{2}
\end{aligned}
$$

Figure 1: A beam with rectangular profile is emitted by a uniform pointsource S. The angles $\boldsymbol{\theta}_{H} \& \boldsymbol{\theta}_{V}$ are the horizontal \& vertical beam angles (i.e. angles subtended by the centralised dotted lines at the point-source S) and $\alpha \& \beta$ are the lateral beam angles (i.e. angles between the lateral beam rays)

Figure 2: An imaginary rectangular plane ABCD, having centre 0 , length l \& width b lying at a normal distance $O S=h$ from the uniform pointsource S, is representing the rectangular profile of the beam.

Now, the solid angle (ω) subtended by the rectangular plane ABCD, having length $l \&$ width b lying at a normal distance $O S=h$, at the point-source S is given by the standard formula of rectangular plane as follows

$$
\omega=4 \sin ^{-1}\left(\frac{\boldsymbol{l b}}{\sqrt{\left(\boldsymbol{l}^{2}+4 \boldsymbol{h}^{2}\right)\left(\boldsymbol{b}^{2}+4 h^{2}\right)}}\right) \quad \text { (as derived in } \mathbf{H C R} \text { 's Theory of Polygon) }
$$

Now, substituting the values of length $l \&$ width b in the above expression, we get

$$
\begin{gathered}
\omega=4 \sin ^{-1}\left(\frac{\left(2 h \tan \frac{\theta_{H}}{2}\right)\left(2 h \tan \frac{\theta_{V}}{2}\right)}{\sqrt{\left(\left(2 h \tan \frac{\theta_{H}}{2}\right)^{2}+4 h^{2}\right)\left(\left(2 h \tan \frac{\theta_{V}}{2}\right)^{2}+4 h^{2}\right)}}\right) \\
=4 \sin ^{-1}\left(\frac{4 h^{2} \tan \frac{\theta_{H}}{2} \tan \frac{\theta_{V}}{2}}{4 h^{2} \sqrt{\left(1+\tan ^{2} \frac{\theta_{H}}{2}\right)\left(\left(1+\tan ^{2} \frac{\theta_{V}}{2}\right)\right)}}\right)=4 \sin ^{-1}\left(\frac{\tan \frac{\theta_{H}}{2} \tan \frac{\theta_{V}}{2}}{\sec \frac{\theta_{H}}{2} \sec \frac{\theta_{V}}{2}}\right)=4 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)
\end{gathered}
$$

Hence, the solid angle (ω) subtended by a beam with rectangular profile at the uniform point-source given the horizontal \& vertical (plane) beam angles $\boldsymbol{\theta}_{\boldsymbol{H}} \& \boldsymbol{\theta}_{\boldsymbol{V}}$, is given as

$$
\omega=4 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \quad\left(\forall \quad \theta_{H}, \theta_{V} \in[0, \pi]\right)
$$

Note: If $\boldsymbol{\theta}_{\boldsymbol{H}}, \boldsymbol{\theta}_{V} \geq \boldsymbol{\pi}$ then apply the following formula to get solid angle subtended by the beam

$$
\omega=4 \pi-4 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \quad\left(\forall \theta_{H}, \theta_{V} \in[\pi, 2 \pi]\right)
$$

Surface area intercepted by the beam with a spherical surface: The surface area intercepted by the beam, having rectangular profile with horizontal \& vertical beam angles $\theta_{H} \& \theta_{V}$, with the spherical surface having a radius $R \&$ centre at the point-source is given as

$$
A_{S}=(\text { solid angle }) \times(\text { radius of spherical surface })^{2}=\omega R^{2}=4 R^{2} \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)
$$

Spherical surface area intercepted by the beam, $A_{S}=4 R^{2} \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)$
Where, $\boldsymbol{\theta}_{\boldsymbol{H}}, \boldsymbol{\theta}_{V} \in[0, \pi] \quad$ or $\quad 0 \leq \boldsymbol{\theta}_{\boldsymbol{H}}, \boldsymbol{\theta}_{V} \leq \pi$
Spherical surface area intercepted by the beam, $A_{S}=4 R^{2}\left(\pi-\sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)\right)$
Where, $\boldsymbol{\theta}_{H}, \boldsymbol{\theta}_{V} \in[\pi, 2 \pi]$ or $\pi \leq \boldsymbol{\theta}_{H}, \theta_{V} \leq \mathbf{2 \pi}$

Beam with a circular profile equivalent to the beam with a rectangular profile emitted from the same uniform point-source: The beams with the circular \& the rectangular profiles are said to be equivalent to each other if they subtend an equal solid angle at a given uniform point-source. Thus profile of the original beam is changed without any change in the total energy \backslash luminous flux associated with the original
beam. Now, let's consider a beam with circular profile subtending a cone angle $\theta_{C} \&$ a solid angle ω at the uniform point-source S (As shown in the figure 3)

Now, consider an imaginary circular plane, with centre O \& a radius r, at a normal distance h from the point source S.

In right $\triangle A O S$

$$
\begin{align*}
& \cos \angle A S O=\frac{O S}{A S} \Rightarrow \cos \frac{\angle A S B}{2}=\frac{O S}{\sqrt{(O S)^{2}+(O A)^{2}}} \\
& \quad \Rightarrow \frac{\boldsymbol{h}}{\sqrt{\boldsymbol{h}^{2}+\boldsymbol{r}^{2}}}=\cos \frac{\boldsymbol{\theta}_{C}}{\mathbf{2}} \quad \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Figure 3: An imaginary circular plane, having centre $0 \&$ a radius r lying at a normal distance $O S=h$ from the uniform point-source S, is representing the circular profile of the beam with a cone angle $\boldsymbol{\theta}_{\boldsymbol{C}}$

Now, the solid angle (ω) subtended by the circular plane at the point-source S is by the standard formula of solid angle of circular plane as follows

$$
\omega=2 \pi\left(1-\frac{h}{\sqrt{h^{2}+r^{2}}}\right)=2 \pi\left(1-\cos \frac{\theta_{C}}{2}\right) \quad(\text { by setting the value from eq }(1))
$$

Now, equating the values of solid angles subtended by the beams with circular \& rectangular profiles at the given uniform point source S, as follows

$$
\begin{gathered}
2 \pi\left(1-\cos \frac{\theta_{C}}{2}\right)=4 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \\
\Rightarrow \cos \frac{\theta_{C}}{2}=1-\frac{2}{\pi} \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \Rightarrow \theta_{C}=2 \cos ^{-1}\left\{\frac{\pi-2 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)}{\pi}\right\}
\end{gathered}
$$

Thus for a given uniform point-source, a beam having rectangular profile with horizontal \& vertical beam angles $\boldsymbol{\theta}_{\boldsymbol{H}} \& \boldsymbol{\theta}_{\boldsymbol{V}}$, is equivalent to a beam having circular profile with a cone angle $\boldsymbol{\theta}_{\boldsymbol{C}}$ given as

$$
\theta_{C}=2 \cos ^{-1}\left\{\frac{\pi-2 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)}{\pi}\right\} \quad\left(\forall \quad \theta_{H}, \theta_{V} \in[0, \pi]\right)
$$

If $\pi \leq \theta_{H}, \theta_{V} \leq \mathbf{2} \boldsymbol{\pi}$ then we have

$$
\begin{gathered}
2 \pi\left(1-\cos \frac{\theta_{C}}{2}\right)=4 \pi-4 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \\
\Rightarrow \cos \frac{\theta_{C}}{2}=2-\frac{2}{\pi} \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right) \Rightarrow \theta_{C}=2 \cos ^{-1}\left\{\frac{2 \pi-2 \sin ^{-1}\left(\sin \frac{\theta_{H}}{2} \sin \frac{\theta_{V}}{2}\right)}{\pi}\right\} \\
\boldsymbol{\theta}_{\boldsymbol{C}}=2 \cos ^{-1}\left\{\frac{2 \boldsymbol{\pi}-\mathbf{2} \sin ^{-1}\left(\sin \frac{\boldsymbol{\theta}_{\boldsymbol{H}}}{\mathbf{2}} \sin \frac{\boldsymbol{\theta}_{\boldsymbol{V}}}{2}\right)}{\boldsymbol{\pi}}\right\} \quad\left(\forall \boldsymbol{\theta}_{\boldsymbol{H}}, \boldsymbol{\theta}_{\boldsymbol{V}} \in[\pi, 2 \pi]\right)
\end{gathered}
$$

2. Solid angle subtended by the beam with rectangular profile given lateral beam angles $\alpha \& \beta$ Let there be a beam with rectangular profile emitted from a uniform point-source S such that $\boldsymbol{\alpha} \& \boldsymbol{\beta}$ are the lateral beam angles measured between the adjacent lateral beam rays (passing through the vertices of rectangular profile) originated from the point-source S. Now, consider an imaginary rectangular plane ABCD with centre O, length $l \&$ width b at a normal distance $O S=h$ from the uniform point-source S (As shown in the figure 2 above)

In right $\triangle A N S$ (see fig-2 above)

$$
\begin{gathered}
\tan \angle A S N=\frac{A N}{S N} \Rightarrow \tan \frac{\angle A S B}{2}=\frac{A N}{\sqrt{(O S)^{2}+(O N)^{2}}} \quad(\text { setting the value of } S N \text { from right } \triangle N O S) \\
\Rightarrow \tan \frac{\alpha}{2}=\frac{\frac{l}{2}}{\sqrt{h^{2}+\left(\frac{b}{2}\right)^{2}}} \Rightarrow \sqrt{\boldsymbol{b}^{2}+4 \boldsymbol{h}^{2}}=\boldsymbol{l} \cot \frac{\boldsymbol{\alpha}}{\mathbf{2}}
\end{gathered}
$$

Similarly, in right $\triangle D P S$ (see fig-2 above)

$$
\begin{gathered}
\tan \angle D S P=\frac{D P}{S P} \Rightarrow \tan \frac{\angle A S D}{2}=\frac{D P}{\sqrt{(O S)^{2}+(O P)^{2}}} \quad(\text { setting the value of } S P \text { from right } \triangle P O S) \\
\Rightarrow \tan \frac{\beta}{2}=\frac{\frac{b}{2}}{\sqrt{h^{2}+\left(\frac{l}{2}\right)^{2}}} \Rightarrow \sqrt{\boldsymbol{l}^{2}+\boldsymbol{4 h}^{2}}=\boldsymbol{b} \boldsymbol{\operatorname { c o t } \frac { \boldsymbol { \beta } } { \mathbf { 2 } }}
\end{gathered}
$$

Now, the solid angle (ω) subtended by the rectangular plane $A B C D$, having length $l \&$ width b lying at a normal distance $O S=h$, at the point-source S is given by the standard formula of rectangular plane as follows

$$
\omega=4 \sin ^{-1}\left(\frac{\boldsymbol{l b}}{\sqrt{\left(\boldsymbol{l}^{2}+4 h^{2}\right)\left(b^{2}+4 h^{2}\right)}}\right) \quad \text { (as derived in } H C R^{\prime} \text { s Theory of Polygon) }
$$

Now, substituting the values of $\sqrt{l^{2}+4 h^{2}} \& \sqrt{b^{2}+4 h^{2}}$ in the above expression, we get

$$
\omega=4 \sin ^{-1}\left(\frac{l b}{\left(l \cot \frac{\alpha}{2}\right)\left(b \cot \frac{\beta}{2}\right)}\right)=4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)
$$

Hence, the solid angle (ω) subtended by a beam with rectangular profile at the uniform point-source given the lateral beam angles $\boldsymbol{\alpha} \& \boldsymbol{\beta}$, is given as

$$
\omega=4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right) \quad(\forall \alpha, \beta \in[0, \pi))
$$

Surface area intercepted by the beam with a spherical surface: The surface area intercepted by the beam, having rectangular profile with lateral beam angles $\alpha \& \beta$, with the spherical surface having a radius R \& centre at the point-source is given as

$$
A_{S}=(\text { solid angle }) \times(\text { radius of spherical surface })^{2}=\omega R^{2}=4 R^{2} \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)
$$

Spherical surface area intercepted by the beam, $A_{S}=4 R^{2} \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)$

Beam with a circular profile equivalent to the beam with a rectangular profile emitted from the same uniform point-source: Let's consider a beam with circular profile subtending a cone angle $\theta_{C} \&$ a solid angle ω at the uniform point-source S (As shown in the figure 3 above)

Now, equating the values of solid angles subtended by the beams with circular \& rectangular profiles at the given uniform point source S as follows

$$
\begin{gathered}
2 \pi\left(1-\cos \frac{\theta_{C}}{2}\right)=4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right) \\
\Rightarrow \cos \frac{\theta_{C}}{2}=1-\frac{2}{\pi} \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right) \Rightarrow \theta_{C}=2 \cos ^{-1}\left\{\frac{\pi-2 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)}{\pi}\right\}
\end{gathered}
$$

Thus for a given uniform point-source, a beam having rectangular profile with the lateral beam angles $\alpha \& \beta$, is equivalent to a beam having circular profile with cone angle $\boldsymbol{\theta}_{\boldsymbol{C}}$ given as

$$
\theta_{C}=2 \cos ^{-1}\left\{\frac{\pi-2 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)}{\pi}\right\}
$$

Conclusion: Thus, for the given values of horizontal \& vertical beam angles $\theta_{H} \& \theta_{V}$ or the lateral beam angles $\alpha \& \beta$, we can easily calculate important parameters such as solid angle subtended by the beam at the pointsource, total area intercepted by the beam with a spherical surface $\&$ cone angle of equivalent beam with circular section. These formulae are very useful for replacing the rectangular profile by circular profile of a beam emitted by a uniform point-source \& vice versa without any change in the total radiation energy/luminous flux associated with the original beam (having either rectangular or circular profile). Thus the articles discussed \& analysed here are very useful for the analysis of radiation energy \& determining the intensity of (uniform) point-source in a given direction in Radiometry \& for the analysis of luminous flux \& luminous intensity of (uniform) point-source in a certain direction in Photometry. These are also very useful in replacing the rectangular aperture by a circular aperture \& vice versa without any change in the total radiation energy/luminous flux passing through an original aperture \& thus useful for the analysis \& the designing of optical\beam emitting (like laser) devices based on (uniform) point-sources.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)

Email: rajpootharishchandra@gmail.com

Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

