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We know that the great circle is a circle whose plane passes through the centre of sphere. The part of a great circle 

on a sphere is known as a great circle arc. The length of minor great circle arc (i.e. less than half great circle) 

joining any two arbitrary points on a sphere of finite radius is the minimum distance between those points. Here 

we are interested in finding out the minimum distance or great 

circle distance between any two arbitrary points on a spherical 

surface of finite radius (like globe) for the given values of 

latitudes & longitudes.   

Let there be any two arbitrary points 𝑨(𝝓𝟏 , 𝝀𝟏) & 𝑩(𝝓𝟐 , 𝝀𝟐) 

lying on the surface of sphere of radius 𝑹 & centre at the point 

O. The angles of latitude 𝝓𝟏 & 𝝓𝟐 are measured from the 

equator plane & the angles of longitude 𝝀𝟏 & 𝝀𝟐 are 

measured from a reference plane OPQ in the anticlockwise 

direction. Here, we are to find out the length of great circle 

arc AB joining the given points A & B. Draw the great circle 

arcs AD and BC passing through the points A & B 

respectively which intersect each other at the peak (pole) 

point P & intersect the equatorial line orthogonally (at 90𝑜) at 

the points D & C respectively. (As shown by the dashed arcs 

PD & PC in the figure 1)   

Join the points A, B, C & D by the dashed straight lines 

through the interior of sphere to get a plane quadrilateral 

ABCD and great circle arc BD.   

Now, the angle between the orthogonal great circle arcs BC 

& CD, subtending the angles 𝛼 = 𝜙2 & 𝛽 = 𝜆2 − 𝜆1 

respectively at the centre O of the sphere, meeting each other 

at the common end point C, is 𝜃 = 𝜋
2⁄  . Now, consider the 

tetrahedron OBCD formed by joining the points B, C and D to the centre O (see the fig-1). A diahedral angle is 

the angle between two intersecting planes measured in a plane perpendicular to the both the intersecting planes. 

Now, the diahedral angle say 𝜃 between the lateral triangular faces BOC and COD is given by HCR’s Inverse 

Cosine Formula [1] as follows 

cos 𝜃 =
cos 𝛼′ − cos 𝛼 cos 𝛽

sin 𝛼 sin 𝛽
                                       … … … … … … (1) 

where, is 𝜃 is the diahedral angle between lateral triangular faces BOC and COD intersecting each other at the 

line OC which is equal to the angle between great circle arcs BC and CD intersecting each other perpendicularly 

i.e. 𝜃 =
𝜋

2
 which is opposite to 𝛼′ = ∠𝐵𝑂𝐷 and   

𝛼′ = ∠𝐵𝑂𝐷, 𝛼 = ∠𝐵𝑂𝐶, 𝛽 = ∠𝐶𝑂𝐷 are the vertex angles of triangular faces BOD, BOC and COD respectively 

meeting at the apex O of tetrahedron OBCD and angle 𝛼′is always opposite to the diahedral angle 𝜃 (as shown in 

the above fig-1 and fig-2 below).   

Figure 1: The dashed great circle arcs PD and PC passing through 

two given points A & B, intersecting each other at the peak (pole) 

point P, meet the equator orthogonally at the points D & C 

respectively on a spherical surface of finite radius 𝑹. 
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Now, substituting the corresponding values i.e. 𝜃 =
𝜋

2
, 𝛼′ =

∠𝐵𝑂𝐷, 𝛼 = ∠𝐵𝑂𝐶 = 𝜙2 and 𝛽 = ∠𝐶𝑂𝐷 = 𝜆2 − 𝜆1 in the 

above Eq(1) (HCR’s Inverse Cosine Formula) as follows 

cos
𝜋

2
=

cos ∠𝐵𝑂𝐷 − cos 𝜙2 cos(𝜆2 − 𝜆1)

sin 𝜙2 sin(𝜆2 − 𝜆1)
 

        

 cos ∠𝐵𝑂𝐷 − cos 𝜙2 cos(𝜆2 − 𝜆1) = 0              

cos ∠𝐵𝑂𝐷 = cos 𝜙2 cos(𝜆2 − 𝜆1)         … … … … … . (2) 

 

Similarly, from the figure-2, the diahedral angle say 𝛾 

between the lateral triangular faces BOD and COD of 

tetrahedron OBCD is obtained by substituting the 

corresponding values i.e. 𝜃 = 𝛾 which is opposite to 𝛼′ =

∠𝐵𝑂𝐶 = 𝜙2, 𝛼 = ∠𝐵𝑂𝐷 and 𝛽 = ∠𝐶𝑂𝐷 = 𝜆2 − 𝜆1 in the 

above Eq(1) ( HCR’s Inverse Cosine Formula) as follows 

  

cos 𝛾 =
cos 𝜙2 − cos ∠𝐵𝑂𝐷 cos(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷 sin(𝜆2 − 𝜆1)
                                                                                                                    

          =
cos 𝜙2 − cos 𝜙2 cos(𝜆2 − 𝜆1) cos(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷 sin(𝜆2 − 𝜆1)
           (Setting value of cos ∠𝐵𝑂𝐷  from Eq(2))        

         =
cos 𝜙2 (1 − cos2(𝜆2 − 𝜆1))

sin ∠𝐵𝑂𝐷 sin(𝜆2 − 𝜆1)
=

cos 𝜙2 sin2(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷 sin(𝜆2 − 𝜆1)
=

cos 𝜙2 sin(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷
                                  

  cos 𝛾 =
cos 𝜙2 sin(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷
                                                                  … … … … … . (3)                                                

 

Now, from the figure-3, consider the tetrahedron OABD formed 

by joining the points A, B and D to the centre O (also shown in 

the above fig-1). Now, the diahedral angle say 𝛿 between the 

lateral triangular faces AOD and BOD is obtained by substituting 

the corresponding values i.e. 𝜃 = 𝛿 which is opposite to 𝛼′ =

∠𝐴𝑂𝐵, 𝛼 = ∠𝐴𝑂𝐷 = 𝜙1 and 𝛽 = ∠𝐵𝑂𝐷 in the above Eq(1) ( 

HCR’s Inverse Cosine Formula) as follows 

  

cos 𝛿 =
cos ∠𝐴𝑂𝐵 − cos 𝜙1 cos ∠𝐵𝑂𝐷

sin 𝜙1 sin ∠𝐵𝑂𝐷
                    

  

cos(90𝑜 − 𝛾) =
cos ∠𝐴𝑂𝐵 − cos 𝜙1 cos ∠𝐵𝑂𝐷

sin 𝜙1 sin ∠𝐵𝑂𝐷
    

(∵ 𝛾 + 𝛿 = 90𝑜)                              

 

Figure 2: The diahedral angle between the triangular faces BOC 

and COD of tetrahedron OBCD is equal to the angle between 

great arcs BC and CD which intersect each other at right angle 

because the great arc BC intersects equatorial line (i.e. great arc 

CD) at right angle. 

Figure 3: The diahedral angle 𝜹 between the triangular faces 

AOD and BOD is equal to the angle between great arcs AD 

and BD which is opposite to the face angle ∠𝑨𝑶𝑩 of 

tetrahedron OABD. 
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            sin 𝛾 =
cos ∠𝐴𝑂𝐵 − cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1)

sin 𝜙1 sin ∠𝐵𝑂𝐷
                       (Setting value of cos ∠𝐵𝑂𝐷  from Eq(2)) 

sin 𝜙1 sin 𝛾 sin ∠𝐵𝑂𝐷 = cos ∠𝐴𝑂𝐵 − cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1)                                                                          

cos ∠𝐴𝑂𝐵 = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝛾 sin ∠𝐵𝑂𝐷                                                                         

    = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin ∠𝐵𝑂𝐷 √sin2 𝛾                       (∵ 0 ≤ 𝛾 ≤ 𝜋)  

= cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin ∠𝐵𝑂𝐷  √1 − cos2 𝛾                                       

                        = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin ∠𝐵𝑂𝐷 √1 − (
cos 𝜙2 sin(𝜆2 − 𝜆1)

sin ∠𝐵𝑂𝐷
)

2

      ( from Eq(3)) 

        = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin ∠𝐵𝑂𝐷 √
sin2 ∠𝐵𝑂𝐷 − cos2 𝜙2 sin2(𝜆2 − 𝜆1)

sin2 ∠𝐵𝑂𝐷
    

= cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √1 − cos2 ∠𝐵𝑂𝐷 − cos2 𝜙2 sin2(𝜆2 − 𝜆1)        

Substituting the value of cos ∠𝐵𝑂𝐷  from the above Eq(2), 

cos ∠𝐴𝑂𝐵 = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √1 − (cos 𝜙2 cos(𝜆2 − 𝜆1))2 − cos2 𝜙2 sin2(𝜆2 − 𝜆1)        

               = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √1 − cos2 𝜙2 cos2(𝜆2 − 𝜆1) − cos2 𝜙2 sin2(𝜆2 − 𝜆1)     

              = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √1 − cos2 𝜙2 (sin2(𝜆2 − 𝜆1) + cos2(𝜆2 − 𝜆1))               

              = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √1 − cos2 𝜙2 (1)                                                                       

              = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 √sin2 𝜙2                                                                                        

              = cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝜙2                                         (∵ 0 ≤ 𝜙2 ≤ 𝜋)                       

 ⇒  ∠𝑨𝑶𝑩 = cos−1(cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝜙2)                      … … … … … . (4)                                  

The above ∠𝐴𝑂𝐵 is the angle subtended at the centre O by the great circle arc AB joining the given points A and 

B lying on the sphere (as shown in the above fig-1). Therefore the minimum distance between two points A and 

B on the sphere will be equal to the great circle arc AB given as follows   

The length of great circle arc AB = Central angle × Radius of sphere =  ∠𝑨𝑶𝑩 × 𝑹                                              

                             = cos−1(cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝜙2) × 𝑅 

                             = 𝑅 cos−1(cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝜙2)      

∴ 𝐌𝐢𝐧𝐢𝐦𝐮𝐦 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐭𝐡𝐞 𝐩𝐨𝐢𝐧𝐭𝐬 𝐀(𝛟𝟏, 𝛌𝟏) & 𝐁(𝛟𝟐, 𝛌𝟐) 𝐥𝐲𝐢𝐧𝐠 𝐨𝐧 𝐬𝐩𝐡𝐞𝐫𝐞 𝐨𝐟 𝐫𝐚𝐝𝐢𝐮𝐬 𝐑,

𝐝𝐦𝐢𝐧 = 𝑹 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝝓𝟏 𝐜𝐨𝐬 𝝓𝟐 𝐜𝐨𝐬(𝝀𝟐 − 𝝀𝟏) + 𝐬𝐢𝐧 𝝓𝟏 𝐬𝐢𝐧 𝝓𝟐) 

∀    𝟎 ≤ 𝝓𝟏 , 𝝓𝟐, |𝝀𝟐 − 𝝀𝟏| ≤ 𝝅     

The above formula is called Great-circle distance formula which gives the minimum distance between any two 

arbitrary points lying on the sphere for given latitudes and longitudes.  
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NOTE: It’s worth noticing that the above formula of Great-circle distance has symmetry i.e. if 𝜙1 & 𝜙2 and 

𝜆1 & 𝜆2 are interchanged, the formula remains unchanged. It also implies that if the locations of two points for 

given values of latitude & longitude are interchanged, the distance between them does not change at all.      

Since the equator plane divides the sphere into two equal hemispheres hence the above formula is applicable to 

find out the minimum distance between any two arbitrary points lying on any of two hemispheres. So for the 

convenience, the equator plane of the sphere should be taken in such a way that the given points lie on one of the 

two hemispheres resulting from division of sphere by the reference equator plane.     

Since the maximum value of cos−1(𝑥) is π hence the max. of min. distance between two points on a sphere is 

= 𝑅(π) = 𝛑𝐑 = 𝐡𝐚𝐥𝐟 𝐨𝐟 𝐭𝐡𝐞 𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫 𝐨𝐟 𝐚 𝐠𝐫𝐞𝐚𝐭 𝐜𝐢𝐫𝐜𝐥𝐞 𝐩𝐚𝐬𝐬𝐢𝐧𝐠 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝐠𝐢𝐯𝐞𝐧 𝐩𝐨𝐢𝐧𝐭𝐬 

 

Case 1: If both the given points lie on the equator of the sphere then substituting 𝜙1 =  𝜙2 = 0 in the great-circle 

distance formula, we obtain 

𝐝𝐦𝐢𝐧 =  𝑅 cos−1(cos 0 cos 0 cos(𝜆2 − 𝜆1) + sin 0 sin 0) =   𝑅 cos−1(cos(𝜆2 − 𝜆1)) =   𝑅|𝜆2 − 𝜆1| = 𝑹|∆𝝀| 

The above result shows that the minimum distance between any two points lying on the equator of the sphere 

depends only on the difference of longitudes of two given points & the radius of the sphere. In this case, the 

minimum distance between such two points is simply the product of radius 𝑅 and the angle ∆𝜆 between them 

measured on the equatorial plane of sphere. This   

If both the given points lie diametrically opposite on the equator of the sphere then substituting |∆𝝀| = 𝝅 in above 

expression, the minimum distance between such points  

𝑅|∆𝜆| = 𝑅(𝜋) = 𝝅𝑹 = half of the perimeter of a great circle passing through thegiven points  

 

Case 2: If both the given points lie on a great circle arc normal to the equator of the sphere then substituting 𝜆2 −

𝜆1 = ∆𝜆 = 0 in the formula of great-circle distance, we obtain 

𝐝𝐦𝐢𝐧 = 𝑅 cos−1(cos 𝜙1 cos 𝜙2 cos(0) + sin 𝜙1 sin 𝜙2)                                                                          

 = 𝑅 cos−1(cos 𝜙1 cos 𝜙2 + sin 𝜙1 sin 𝜙2) = 𝑅 cos−1(cos(𝜙1 − 𝜙2)) = 𝑹|𝝓𝟏 − 𝝓𝟐| 

In this case, the minimum distance between such two points is simply the product of radius 𝑅 and the angle 

|𝜙1 − 𝜙2| between them measured on plane normal to the equatorial plane of sphere.  

 

Case 3: If both the given points lie at the same latitude of the sphere then substituting 𝜙1 = 𝜙2 = 𝜙 in the formula 

of great-circle distance, we obtain 

𝐝𝐦𝐢𝐧 = 𝑅 cos−1(cos 𝜙 cos 𝜙 cos(𝜆2 − 𝜆1) + sin 𝜙 sin 𝜙) = 𝑹 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬𝟐 𝝓 𝐜𝐨𝐬(𝝀𝟐 − 𝝀𝟏) + 𝐬𝐢𝐧𝟐 𝝓)        

In this case, the minimum distance between such two points is dependent on the radius and both the latitude, and 

longitudes.   
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𝐈𝐥𝐥𝐮𝐬𝐭𝐫𝐚𝐭𝐢𝐯𝐞 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 

Consider any two arbitrary points A & B having respective angles of latitude 𝝓𝟏 = 𝟒𝟎𝒐 & 𝝓𝟐 = 𝟕𝟓𝒐 & the 

difference of angles of longitude 𝚫𝝀 = 𝝀𝟐 − 𝝀𝟏 = 𝟓𝟓𝒐 on a sphere of radius 25 cm. The minimum distance 

between given points lying on the sphere is obtained by substituting the corresponding values in the above great-

circle distance formula as follows  

dmin = 𝑅 cos−1(cos 𝜙1 cos 𝜙2 cos(𝜆2 − 𝜆1) + sin 𝜙1 sin 𝜙2) 

  

= 25 cos−1(cos 40𝑜 cos 75𝑜 cos(55𝑜) + sin 40𝑜 sin 75𝑜) 

= 25cos−1(0.7346063699582707) ≈ 18.64274952833712 𝑐𝑚 

The above result also shows that the points A & B divide the perimeter = 2𝜋(25) ≈ 157.07963267948966𝑐𝑚 

of the great circle in two great circles arcs (one is minor arc AB of length ≈ 18.64274952833712 𝑐𝑚  & other 

is major arc AB of length ≈ 138.43688315115253 𝑐𝑚) into a ratio ≈

18.64274952833712 
138.43688315115253⁄ ≈ 𝟏: 𝟕. 𝟒 

 

Conclusion: It can be concluded that the analytic formula of great-circle distance derived here directly gives the 

correct values of the great-circle distance between any two arbitrary points on the sphere because there is no 

approximation in the formula. This is extremely useful formula to compute the minimum distance between any 

two arbitrary points lying on a sphere of finite radius which is equally applicable in global positioning system. 

This formula is the most general formula to calculate the geographical distance between any two points on the 

globe for the given latitudes & longitudes. This is a high precision formula which gives the correct values for all 

the distances on the tiny sphere as well as the large spheres such as Earth, and other giant planets assuming them 

the perfect spheres. 

 

Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering) 

M.M.M. University of Technology, Gorakhpur-273010 (UP) India                                                      Aug, 2016 

Email: rajpootharishchandra@gmail.com                                                                                                                

Author’s Home Page: https://notionpress.com/author/HarishChandraRajpoot 

 

 

 

 

References: 

[1]: H C Rajpoot. (2014). HCR’s Inverse Cosine Formula, (Solution of internal & external angles of a tetrahedron). 

Academia.edu.  
Link:https://www.academia.edu/9649896/HCRs_Inverse_Cosine_Formula_Solution_of_internal_and_exte

rnal_angles_of_a_tetrahedron_n  

mailto:rajpootharishchandra@gmail.com
https://notionpress.com/author/HarishChandraRajpoot
https://www.academia.edu/9649896/HCRs_Inverse_Cosine_Formula_Solution_of_internal_and_external_angles_of_a_tetrahedron_n
https://www.academia.edu/9649896/HCRs_Inverse_Cosine_Formula_Solution_of_internal_and_external_angles_of_a_tetrahedron_n

