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Introduction: Here are some important formula in 2D-Geometry derived by the author using simple

geometry & trigonometry. The formula, derived here, are related to the triangle, square, trapezium & tangent
circles. These formula are very useful for case studies in 2D-Geometry to compute the important parameters

of 2D-figures. The formula & their derivations are in the order as given below.

1. If P is a point lying inside the square ABCD such that = PDC = = PCD = « (as shown in the

figure-1) then =APB = @ is given by the following formula

0= Ztan‘l( (V 0 <a<tan"1(2))

2 — tan a)

A

o c

D .

Figure 1: Given angle a

Proof: Drop the perpendiculars PM & PN from the point P to the sides AB & CD
respectively in the square ABCD (as shown in the figure-2) Let CN = DN = x
then in right APND

t —PN—PN:PN— t
ana—DN— o =xtana

PM = MN — PN =CD — PN =2x —xtana
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In right APMA !
. <
L Pié-
x x
tang = X 1 Figure 2: In square ABCD, AM = DN = x, MN =

2 2x—xtana 2-—tana

6 =2tan"? ( Proved.

2 —tan a)

2. If P is a point lying inside the square ABCD such that AP = a & PC = b (as shown in the figure-
3) then the area of A BPD is given by the following formula

la® — b?|

[ABPD] = —

Proof: Drop the perpendiculars PM & PN from the point P to the sides AD & CD respectively in the
square ABCD (as shown in the figure-4 below). Let x be the side of square ABCD & —PCN =6
then in right APNC

PN =bsinf & NC = bcosfO

CD =2x & =APM = =BPM =6/2

AT

D

\\P
\

b
\

\
\

0

Figure 3: In square ABCD

PA=a&PC=Db
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Now,
MP =DN =DC—-NC=x—bcosb

AM = AD — MD = AD — PN =x —bsinf
Applying Pythagorean theorem in right AAMP

(AP)? = (AM)? + (MP)?

(a)?2 = (x — bsin8)? + (x — b cos 9)? D C

N
RE. x »
a? = x? + b?sin? 0 — 2bxsin 0 + x? + b%>cos? @ — 2bx cosO Figure 4: Let x be side of square ABCD & ——PCN = 0

a? = 2x? + b? — 2bx(sin @ + cos 9)
2x% — 2bx(sin @ + cos ) = a? — b?

a? —b?

x? — bx(sin@ + cos 9) = >

1 a? — b?
E(x2 — bx(sin§ + cosh)) = ) TR ¢ § |

Now, the area of ABPD (refer to above figure-4) is given as
[ABPD] = [ABCD] — [ABPC] — [ACPD]

1 1 1 1 1 1 _
=5 (BO)(CD) =5 (BOYINC) = 5 (CD)(PN) = 5 ()() = 5 () (b cos ) = = (@) (bsin6)

1
=E(x2 — bxsin6 — bx cos )

1
== (x? — bx(sin O + cos §)
2

2 _p2
-4 2 b (from eq(l))

Since, the area is positive hence taking absolute value of above result,

la? — b?|

[ABPD] = — Proved.

3. The square ABCD has each side a. If two quarter circles each with radius a & centres at the A

B
P
vertices C & D are drawn then the radii Rp & R, of smaller inscribed circles with centres P & Q
respectively (as shown in the figure-5) are given by the following formula
e
R a oy 3a
P=7= Q = —
16 8 ol . lc

Figure 5: Two inscribed
circles have radii Rp & R
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Proof: Let Rp & R, be the radii of smaller inscribed circles with the centres P & Q
respectively. Join the centres P & Q to the vertex D and draw the line MN passing
through the centres P & Q which is perpendicular to the sides AB & CD of the square

ABCD (as shown in the figure-6).
Applying Pythagorean theorem in right APND

(PD)? = (PN)? + (DN)?

(@+Rp) = (@=Rp)*+(3)

aZ
a? 4+ Rp? +2aRp = a® + Rp? — 2aR, +

aZ
4aRP = T

R _a
P 7 16

Now, applying Pythagorean theorem in right AQND

(@D)? = (QN)* + (DN)?
2
(a=Rp)" = (R +(3)

a
a? +R,* —2aRy = Ry* + —

4
3a?
2aRQ = T
3a
Ro=7g

A

D N

¥

Figure 6: PM = Rp, QN =R, PD =a +
Rp,PN=a—-Rp&DQ=a—-R,

Proved

Proved.

4. The square ABCD has each side a. If two quarter circles each with radius a & centres at the vertices C& D
are drawn then the radius (r) of smaller inscribed circle (as shown in the figure-7) is given by the A 8

following formula

ol

D C
Figure 7: Small circle of
radius r inscribed by two
quarter circles & the side BC
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Proof: Let 1 be the radius of smaller inscribed circle with the centre O. Join the centre
O to the vertices C & D and drop the perpendiculars OM & ON from the centre O to
the sides BC & CD respectively in the square ABCD (as shown in the figure-8).

Applying Pythagorean theorem in right AOMC
MC = /(0C)? — (OM)?
=(a—1)?—r?

=ya?—2ar+r2—r?

¢
- a -

Figure 8: In square ABCD,0C = a —1r &
OD=a+r

MC = ON =+/a? — 2ar
Applying Pythagorean theorem in right AOND

(0D)? = (ON)? + (DN)?

2
(a+71)= (\/ a? — 2ar) +(a—1)?
a? +2ar +r? = a? — 2ar + a? — 2ar +r?
6ar = a?
a Proved
=— roved.
"~%

5. Two squares ABCD & STUV having each side a & b respectively, are symmetrically drawn
sharing a common edge coinciding with the chord PQ of a circle which inscribes the two /
P S

squares (as shown in the figure-9) & passes through the vertices A, B, U & V. Then the radius
(R) of inscribing circle & the length of common chord PQ are given by the following formula

_ +/5(5a? + 5b* + 6ab)
- 8

R

& PQ=+vV5ab

v

Figure 9: Two squares are drawn with a
common edge inscribed in a circle

Proof: Let R be the radius of circle with the centre O inscribing two given squares. Join

A B
the centre O to the vertices A & V and the point P. Drop the perpendiculars OM & ON ‘\\ nr
from the centre O to the sides AB & UV respectively (as shown in the figure-10). 5 \‘ E
PL_-.$ D \~ Lg c T ___\a
Applying Pythagorean theorem in right AOMA i \'|
\\\\‘\;‘o
a2 V4R2 —qa? b 7
OM = J(04)? — (AM)? = /RZ -3) =—5— |
/'/ :'
Applying Pythagorean theorem in right AONV A Nlh i
2 /
ON =./(0V)2 — (VN)2 = |R?— (9) — 4R? — b? Figure 10: Two squares ABCD & STUV
2 2

sharing common edge on the chord PQ
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From symmetry in the above figure 10, we have

OM + ON = MN

V4R? —a? V4R? - b?

> + > =a+b

V4R? — a? 4+ \/4R% — b2 = 2(a + b)

(VaRz = a? + 4R? - bz)z = (2a+p)’

4R? — a® + 4R? — b? + 2,/(4R? — a?) (4R? — b2) = 4(a® + b? + 2ab)

2./(4R? — a?)(4R? — b2) = 5a? + 5b? + 8ab — 8R?

(2J/@RZ=a?)(4R? = 192))2 = (5a? + 5b? + 8ab — 8R?)?
64R* — 16(a? + b?)R? + 4a?b? = (5a® + 5b? + 8ab)? + 64R* — 16(5a® + 5b? + 8ab)R?
16(5a? + 5b% + 8ab — a? — b?)R? = (5a? + 5b? + 8ab)? — 4a?b?
16(5a% + 5b% + 8ab — a? — b?)R? = (5a? + 5b? + 8ab + 2ab)(5a? + 5b? + 8ab — 2ab)
16(4a? + 4b% + 8ab)R? = (5a? + 5b? + 10ab)(5a? + 5b? + 6ab)
64(a? + b%? + 2ab)R? = 5(a? + b? + 2ab)(5a? + 5b? + 6ab)
64R? = 5(5a% + 5b% + 6ab)

_ 5(5a” + 5b* + 6ab)

R2
64

_ +/5(5a? + 5b* + 6ab)
B 8

Proved.

R

Now, substituting the above value of radius (R) of circle in the above expression, we get

4

2
2 <J5(5a2 +5b% + 6ab)> a?
- - &

25a? + 25b2 + 30ab — 1642
64

_ V9a? +25b% + 30ab
B 8

v (3a +5b)?

8

_3a+5b
)

From the above figure-10, we have
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3a+5b _5(b—a)

OE = OM — EM =
8 @ 8

Applying Pythagorean theorem in right AOEP (refer to figure -10 above)

PE = /(0P)? — (OE)? = \/R? — (OE)?

(5B +5b7 v 6ab)\  (5(b—a)\’
- ) - (5)

25a? + 25b2% + 30ab — 25a?% — 25b% + 50ab
64

2

Hence, from the above figure-10, the length of common chord PQ,

@)
2

PQ = 2PE = 2( =+v5ab Proved.

6. Two trapeziums ABCF & CDEF each having three equal sides a & b respectively, are symmetrically drawn
sharing a common edge coinciding with the chord FC of a circle which inscribes the two
trapeziums (as shown in the figure-11) & passes through the vertices A, B, C, D, E & F. Then the
radius (R) of inscribing circle & the length of common chord FC are given by the following
formula

5 a? + b% + ab 5 o= 3ab(a + b)
B 3 " a’+b%+ab

Figure 11: Two trapeziums drawn with a
common edge are inscribed in a circle

Proof: Let R be the radius of circle with the centre O inscribing the two
trapeziums ABCF & CDEF. Join the centre O to all the vertices A, B, C, D, E & F.
Drop the perpendiculars OM & ON from the centre O to the sides AB & ED
respectively (as shown in the figure-12). Let 2a & 28 be the angles exerted at the
centre O by each of three equal sides a &b of trapeziums ABCF & CDEF
respectively (see figure-12). Now, in right AOMA

AM a/2 a

0A R 2R

sina =

Similarly, in right AONE

. EN _ b/2 b
sinff =—=—=—
OE R 2R
Figure 12: Two trapeziums ABCF & CDEF, each
has three equal sides a & b exerting angles
2a & 23 respectively at the centre O of circle

inscribing them
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Now, the sum of the angles exerted at the centre O by all the six sides of hexagon ABCDEF (see fig-12 above)

3(2a) + 3(2B) = 360°

a+f =60°
a=60°-p
sina = sin(60° — B) (taking sine on both sides)

sina = sin 60° cos B — cos 60° sin 8

gcosﬁ—%sinﬂ

sina (diving both sides by sin 8)
Sinp Sinp iving both sides by sin 8
a
28 _V3 ., 1
b "2 cotf >
2R
a_\/§ ¢ 1
b= 7 COF3
8 2a+b
cotp =
bV3
N nf=— - 0<p<m
ow, sinf = = T
cosecf /1 + cot?f
] 1 b3 b\3
S]nB = = =
2 V4a? +4b2+4ab 2Va? + b% + ab
1_I_<2a+b>
bV3
But in right AONE (see figure -12 above)
. _EN _b/2 b
SMF=0E= R "R
. b3 _ b
" 2vVaZ+bZ+ab 2R
V3 1

Vaz+b2+ab R

a?+ b2 +ab
R = — s Proved

sin ==F0Q =

Now in right AOQF (see figure-12 above)

FQ
OF
F
sin3f = ?Q
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FQ =Rsin3p
= R(3sinp — 4sin3p)

= Rsin B (3 — 4sin?p)

~ a2+b2+ab( bV3 )3 4( b3 )2
B 3 2vVa? + b2 +ab 2va? + b2 +ab

b [ 3a? + 3b?% + 3ab — 3b?
a?+ b?%+ab

2

b 3a(a + b)
~ 2\ a?+b2+ab

3ab(a + b)

Fe= 2(a? + b? + ab)

Now, the length of common chord FC (see figure-12 above) is given as

FC=2FQ=2( 3ab(a + b) ) 3ab(a + b)

= Proved.
2(a? + b? + ab) a’?+b%+ab

7. A small circle with radius 7 & centre at D is inscribed in a large semi-circle of

radius R & centre at O such that it touches the semi-circle internally at the periphery c
& the diameter AB. Now, a tangent BC is drawn from end B to the small circle &

extended such that it intersects semi-circle at C (As shown in the figure-13). Then the

length of extended tangent BC is given by the following formula D !l"
AL B
= — ’R 72 R >
_ -1
L= AT {2 tan (R T m)} Vr<R/2 Figure 13: Small circle touches the
periphery & diameter of semi-circle
internally

Proof: Join the centre D of small circle to the centre O of semi-circle & the
point B by dotted straight lines. Drop the perpendiculars OM & DN from the
centres O & D to the diameter AB & tangent BC respectively (as shown in
the figure-14). Let 2a be the angle between diameter AB & tangent BC
which is bisected by line BD (see figure-14).

Applying Pythagorean theorem in right ADNO

NO =,/(0D)? — (DN)?
— (R — )2 — ()2
=V(R-7) ) Figure 14: Perpendicular OM drawn from the centre O

bisects extended tangent line BC. BD bisects =~ ABC

=+R2+12—2Rr — 2

=+ R%?—2Rr

Now, in right ADNB
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DN r r r
BN NO+OB +RZ—2Rr+R R+VRZ-2Rr

tana =

r
a =tan™! (—)
R ++VR? — 2Rr

Now, in right AOMB (see figure 14 above)

BM
cos =—=0BM = —

OB

) _BM

cos2a = R
BM = Rcos2a

Hence, setting the value of the angle «, the length of extended tangent line BC,

BC = 2BM = 2R cos 2«

r
BC = 2R cos {2 tan~?! (—)} Proved.
R ++VR?% — 2Rr

8. Two small semi-circles of radii a & b and centres at C & D are drawn inside a large
semi-circle of radius a + b & centre at O such that the small semi-circles completely G
share the diameter AB of large one. Now two identical (twins) small circles with
centres C; & C, are inscribed by three semi-circles & a perpendicular line EF such
that these twins are tangent to the vertical line EF, internally tangent to big semi-
circle & externally tangent to small semi-circles. (as shown in the figure-15). Then
the radius (r) of each of identical (twins) circles is given by the following formula A

G

——
a+b
ab Figure 15: small identical (twins) circles

Tr=

a+b with centres C; & C; are tangent to three
semi-circles & perpendicular EF

Proof: Join the centres C; & C, of small identical circles to the
centres C, O & O, D respectively by the dotted straight lines. Drop the
perpendiculars from the centres C; & C, to the perpendicular EF &
the diameter AB. (as shown in the figure-16). Let r be the radius of
each of small identical circles, == C,C0 = a & =C,D0 = f .

Now in AC; CO , applying cosine rule,

|
H \
] ]
(€,0)* + (€C0)? — (C,0)? :' \
cos="C,C0 = 2(C,0)(C0) A d h 8
AR B
cosa=(a+r)2+(b)2_(a+b_r)2 K————‘(A.-O-b)"—*

2(a+71)(b)
Figure 16: 0C=b&CCy=a+1,0C;=a+b—71r and

a? +r2+2ar +b%—a? —b? —12 —2ab + 2br + 2ar OP=a& C;D=b+1,0C,=a+b-r

2b(a+71)

cosa =

2ar + br —ab

cosa = b(a+r1)
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Now, in right AC; MC (see figure 16 above)

= C,CM = e
cos 1M =7

CM
a+r

cosa =

2ar+br—ab_2ar+br—ab

M = = = ..(1

(o (a+r)cosa=(a+71) b+ 5 (D
Now, in AC,DO , applying cosine rule,
(C,D)* + (0D)? — (C,0)?
DO =
cos = (C,D0 2(C,D)(0D)
b+r)?+@?—-(a+b—1)?
osf =
2(b +1)(a)
_ b?+71?+2br +a®—a® —b* —r? —2ab + 2br + 2ar
cosp = 2a(b + 1)
_ 2br+ar —ab
cosf = alb+r)
Now, in right AC,ND (see figure 16 above)
ND
cos =< C,DN = CZ_D
_ ND
cosf = b+r
2br +ar —ab 2br +ar —ab

ND=(b+r)cosp=((b+r) = . (2)

albb+r) a
Now, from the figure 16 above, we have
MN =CD—-CM — ND

2ar + br—ab 2br+ar —ab

2r=a+b— 5 7

(Setting values of CM & ND from eql & eq2 )

a®b + ab? — 2a*r — abr + a®b — 2b%*r — abr + ab?
ab

2r =

2abr = 2(a?b + ab? — a?r — b?>r — abr)

abr = a?b + ab? — a?r — b%*r — abr
(a? + b? + 2ab)r = a®b + ab?
(a+b)*r =ab(a+b)

ab
a+b

r= Proved.
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A
9. A right AABC with orthogonal sides a & b is divided into two small right triangles T
ABDA & ABDC by drawing a perpendicular BD from right-angled vertex B to the D
hypotenuse AC. If O, & 0, are the centres of the inscribed circles of right \O\’
ABDA & ABDC respectively (as shown in the figure-17) then the distance between ¢
the inscribed centres 0 & 0, is given by the following formula NS o,
48 — &
a+b—+a*+ b? b .
10, = Figure 17: 0, & 0, are the centres of
V2 inscribed circles of right ABDA & ABDC
Proof: Join the centres 0; & 0, of inscribed circles respectively by A
the dotted straight lines. Drop the perpendiculars O, P & 0,Q from T
the centres 0; & O, respectively to the hypotenuse AC (as shown in P
the figure-18). o % D
S
1 1 a \:\ Q
Area of right AABC = = (AB)(BC) = = (AC)(BD) o A
2 2 BNt N A
1 1 \6,2
5 @) =3 (Va2 +b7) (BD)
2B c
¥ b —l
Figure 18: A perpendicular O{M is drawn to the line 0,Q
ab such that O,M = PQ
BD = ———
va? + b?

Now, applying Pythagorean theorem in right ABDA ,

ab )2 _|a*+a*b* —a?b* a?
- a? + b2 Vaz + b2

AD = (AB)Z - (BD)Z = \/az - (\/ﬁ

Similarly,
bZ
va? + b?

Now, the radius O; P of inscribed circle of right ABDA is given as

CD =

1
Areaof ABDA 3 (BD)(AD)
semi perimeter 1(AB + BD + AD)
2

() )

:1( ab az )
5la+ +
2 Va2 +b?2  a?+ b2

0,P =

asb
" a®+ab?+ (a2 + ab)Va? + b?
a*b

" a?+b2+ (a+bWa? + b2
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a’b
Va2 + b2(a+ b +Va? + b2)

B a?b(a+ b —+aZ+b?)
"~ VaZ+bZ(a+b+ Va2 +b2)(a+b—VaZ + b?)
B a’b(a +b —VaZ + b?)

VaZ+ 0% ((a+b)2 - (Va2 + b?)")

B a?b(a+ b —Va? + b?)

~ VaZ + b%(a? + b? + 2ab — a? — b?)
_a*b(a+b—+a? +b?)

B va? + b2(2ab)

_a(a+b—\/a2+b2}
ST ek

0 P_a(a+b—m)
N oy

Similarly, the radius 0,Q of inscribed circle of right ABDC is given as

_b(a+b—Va®+b?) )
= Nroen SN )

Now, in right ABDA , using property of the inscribed circle (refer to the figure-18 above),

(D)

0,0

AB + AD — BD
AP = —MF—
2
a? ab
a+ -
_ va2+ b2 Va?+b?
2
a? —ab + ava? + b?
AP = ..(3)
2N+ 2
Similarly, in right ABDC
b2 —ab + bVa? + b*
QC = v e e e e (4)

N T b2
Now, in right AABC (see figure-18 above)
PQ = AC— AP —QC

m az—ab+ava2+b2 bz—ab+bva2+b2
=.a — -
2va? + b? 2va? + b?

_2a2+2b2—a2+0Lb—0n/0t2+b2—b2+ab—b\/az+b2
B 2va? + b2

(setting values from (3)&(4))
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_a*+b*+2ab—(a+b)Va? +b?
B 2Va? + b?

_(a+b)*—(a+b)Va*+b?
- N@ T2

(a+b)(a+b—+az+b?)
NaE T b

Applying Pythagorean theorem in right AO; M O, (see figure-18 above)

PQ =0,M = .. (5)

0,0, =+/(0,M)? + (0,M)?

0,0, = /(0;M)? + (0,Q — 0,P)?

Setting the corresponding values of 0; P, 0,Q & O, M from eq(1), (2) & (5) in above expression, we get

0.0, — ((a+b)(a+b—\/az+b2))2+<b(a+b—\/a2+bz)_a(a+b—\/a2+b2))2
102 = N T b N N T b

((a +b)(a+b—VaZ+ bz))2 N ((b —a)(a+b—VaZ+ bz))2
N T b N0

(a+b—VEZTH?
T e

(a+b—VTFD?
T ek

(a+b-VaZ ¥ b?)
T Wat b V2 b

)J(a+b)2 F(b—a)?

)\/a2+b2+2ab+a2+b2—2ab

(a+b—VTTH)

0,0, = NG Proved.

10. If P is a point lying inside the AABC such that .= PAB = = PBC = = PCA = 0 then the angle 0 is

given by the following formula

sinA4 sin B sin C
1+ cosAcosBcosC

tan @ =

Proof: Consider any point P lying inside the AABC having its sides BC = a,AC = b, AB = ¢ such that
—PAB = =PBC = = PCA = 0. Join the point P to the vertices A, B & C by the dotted straight lines. Drop
the perpendiculars PM & PN from the point P to the sides AB & AC respectively. (as shown in the figure-19

below).
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Now, in right APMA,
tan = PAM = PM tanf = PM
an = = tanf = M

_ PM
" tan®

Similarly, in right APMB

B PM
" tan(B — 0)

But we have, AM + MB = AB =c

) PM 4 PM _
" tanf tan(B—6)

c

_ ctanf tan(B — 0)
" tan6 + tan(B — 0)

Again, in right APMA,

in6 pa=tM
= —_— =
ST =4 sind

ctandtan(B — 0)
_ tan6 +tan(B —0)
B sin@

_ csect tan(B — 0)
" tan6 + tan(B — 0)

Now, in right APNC (see figure 19 above),

tan == CN———N = t 6———N
an P NC an

NC
NC = PN
" tané@
Similarly, in right APNA
N = PN
" tan(4 —0)
But we have, AN+ NC=AC=0b
PN PN

” tan(4 — ) +tan9 =b

__ btan6 tan(4 — 0)
" tanf + tan(4 — )

Again, in right APNA (see figure 19 above)

ind—-0) =N 4 pa=_tN
sl A = sin(4 - 0)

Figure 19: Point P is lying inside AABC having sides
a,b,c suchthat = PAB = ~<PBC=_=PCA=280

(D)
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btanftan(4A — 0)
_ tanf +tan(4 — 6)

sin(4 — 0)
b sec(A —0)tan@ 5
" tan® + tan(4 — 6) - (2)
Now, equating the values of PA from (1) & (2), we get
csecOtan(B — 0) b sec(A —0)tan@
tan@ + tan(B —60)  tan6 + tan(4 — )
¢ sin(B —0) b sin@
cosfcos(B—0)  cos(A—8)cosO
sinf  sin(B—60) sinf sin(4 —0)
cosf " cos(B—8) cosO ' cos(A—8)
csin(B — 0) csind

sin @ cos(B — 8) + cos 8 sin(B — 8) ~sing cos(A — 6) + cos 8 sin(A — 0)

csin(B — 6) B b sin@
sin(0 + B—60) sin(6+A4—0)

csin(B — 8) __bsin®
sinB " sind

sin(B — 6) _bsinB
sin @ " csind

sin B cos @ — cos B sin@ (b) sinB

sin @ c/sinA
sin B\ sin B b sinB
sinB cotf — cosB = ( - > - <fr0m sine rule, - = — )
sinC/ sinA ¢ sinC
in B cotd = sin® B + B
S B coty = sinAsinC cos
sinB cosB

to = +
co sindsinC sinB

3 sin? B + sin A cos Bsin C

sinA sin B sin C

_1- cos? B + sin A cos Bsin C
B sinA sin B sin C

_14cosB (sinAsinC — cosB)
B sinAsinBsinC

_14cosB (sinAsinC — cos(mr — A — C))
B sinAsin B sinC

_14cosB (sinAsinC + cos(4 + C))
B sinAsinB sin C

_14cosB (sinAsinC + cos A cosC —sinAsinC)
B sinAsin B sinC
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1+ cosB (cosAcosC)
sinAsin B sinC

cotd =

1+ cosAcosBcosC
sinAsinB sinC

cotf =

sinAsin B sinC

tan@ = Proved.
an 1+ cosAcosBcosC M

11. If the rhombus MBND is formed by joining the vertices B & D to the mid-points P, Q, R & S of

the sides each of length a of a square ABCD (as shown in the figure-20) then each side, acute A ; B
interior angle & the area of rhombus MBN D are given by the following formula M
S a
aV5 1 a? <
MB = BN = ND = DM = 3 —MDN = 2tan! (§> & Area of rhombus MBND = 3 " ’

'____R_—a—ﬂ

Figure 20: P, Q, R & S are the
mid-points of sides of square
ABCD. MBND is a rhombus

Proof: Draw the diagonals AC & BD of square ABCD by dotted straight lines which intersect each other at right
angle at the point O. (as shown in the figure-21). Let -~ OBN = =0DN =6

Using Pythagorean theorem in right AQCD

2 5
pQ = /@07 + (DY = |(3) +(a)2=%—

A P B

Now, in ABDQ , applying cosine rule, -
BD)? + (DQ)? — (BQ)?
cos —5pQ — BDY + (OQ? - (BQ)
2(BD)(DQ)
D
2
2 aVs a\?
(a\/f) + ( 2 ) - (7) Figure 21: Rhombus MBND is obtained by joining
cosf = NG the vertex B to the mid-points R & S & vertex D
a to the mid-points P & Q of sides of square ABCD
Z(a\/f) ( ) )
_ 3a?
"~ azy10
_ 3
V10
sinf V1 -—cos?6 ] ks
tan@ = = (smce, 0< —)
cos 6 cos @ 2
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3 2
1-(715)
Vo | ;
tan6 = T (settlng value of cos 6 = /\/1_0)
V10

t 9—1
ang =

1
= -1
= 6 =tan (3)

Hence, acute interior angle of rhombus MBND is given as

1
~—MDN = ~MBN =260 = 2tan™! (§> Proved

In right ADON (see above figure-21)

o 0P
Cos —DN
av?2
oD —3 aV5
= DN = =

cos6 3 3
V10

Hence, each side of rhombus MBND

avV's
MB =BN =ND =DM = = Proved.

Again, in right ADON (see above figure-21)

tanf = —
an 0D

aﬁ)l_i
37 32

= ON =0Dtanf = (T

Now, using symmetry in above figure-21, the area of rhombus MBND is given as

Area of rhombus MBND = 2(Area of ABDN)

=2 (% (BD)(ON))

. (;(am (ﬁ))

=— Proved.
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12. The square ABCD has each side a. If two quarter circles each with radius a & centres at the vertices C &
D and a semicircle with diameter AB are drawn then the radius (r) of smaller inscribed circle with centre O

(as shown in the figure-22) is given by the following formula A e

ol

) ¢
e g

Figure 22: Small circle of
radius r inscribed by two
quarter circles & a semicircle

Proof: Let 1 be the radius of smaller inscribed circle with the centre O. Join the centre O

to the vertex D & extend it to intersect quarter circle at point E. Drop the perpendicular A B
OM from the centre O to the side CD in the square ABCD (as shown in the figure-23). =
v,
Now, in right AOMD, we have / /{b
a a A g
0M=0F+FM=r+E=E+r / ’,' :
§ /S i
CD a T b
OD=DE-OFE=a-r, DM=—-=3 D 13\1 C
3 a |
Applying Pythagorean theorem in right AOMD Figure-23: DE=CD = a,0E = OF = r
(0D)? = (OM)? + (DM)? &0D=DE—-OE=a—r
a 2 ay?
— )2 = (= =
(a—r1) (2+r) +(2)
a? a?
a?+7r?—2ar = T+r2+ar+ =
2
3ar = —
ar >
"= 6a
=2 Proved
r= ‘ roved.

13. Two circles of radii r; & 1, and centres A & B respectively intersect each other at two distinct points C
& D such that the distance between their centres is d then the length (I) of common chord CD & angle (0) of
intersection of circles are given by following formula

1= V(@ +13)2 —d¥)(d? — (1, —12)?) & 0 = sin-1 <L) e (L)

d ry 2r,

Where, ri—rl<d<(ri+ry)
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Proof: Consider two intersecting circles with centres A
& B and radii ; & r;, respectively. Join the centres A &
B to each other & to the point of intersection C. The
straight line AB bisects the common chord CD
perpendicularly. Draw two tangents CP & CQ at the
point of intersection C which when extended meet line
AB at the points P & Q. (as shown in the figure-24).

LetCD =1, = PCQ =6

Now, using Pythagorean theorem in right AAMC

PR o

Figure-24: The common chord CD is bisected by line AB perpernd cdlrly &
angle of intersection of circles is == PCQ = 6 between tangents CP & CQ.
ZACP=£BCQ=9OO—0

Now, using Pythagorean theorem in right ABMC

MB=\/W=JT22—G)Z =Jr22_§

ButAM + MB = AB =d

2
(dz—r2—7‘2)2+E +25(d2—r2—r2):4 1‘2—E 7‘2—E
1 2 2 2 1 2 1 4 2 4

l4 4
(d? — 2 —n,2)? +Z+ 2(d? —n?—n2) =4’ - Pr2+n3)+ 7

Pd?—n?-n2+n2+n2)=4n’rn2— ([d* - n?-n?)?
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12d? = 2nr, —d?> + 12 + 22y + d? — 2 — 1,%)

(P4t +2nn — d®)(d? — (2 + 1,2 — 2n1y))
= pE

((n +1)*—d*)(d* = (np —1n)?)
dz

12

2=

_ \/((r1 +1)? —d?)(d? — (n —1,)?)

: d

Proved.
Now, in right AAMC, (see above figure 24) we have

CM
sin == CAM = —

AC
2l R ___1< )
sina = n o on a = sin 2
Similarly, in right ABMC, we have
in ==CBM = e
sin =3C
] l/2 l . _1< l >
sinff = Y 7 = B =sin 2
In right AACQ, we have =ACP + =PCQ = ACQ

= ACP + 6 =90°

= ACP =90° -6

In right ABCP, we have = BCQ + =PCQ = <BCP
~=BCQ + 6 =90°

= BCQ =90° -6

~=_CPQ is an exterior angle of AACP, we have = CPQ = < CAP + —<ACP

l
4CPQ=a+9O"—9=sin‘1(?>+90°—9
1

Similarly, = CQP is an exterior angle of ABCQ, we have = CQP = —=CBQ + <BCQ

l
4CQP=,8+90°—9=sin'1<§)+90°—9
2

Now, in ACPQ the sum of all interior angles is 180° hence we have

—PCQ + —CPQ + —CQP = 180°
l l
6 + (sin‘1 (—) +90° — 9) + (sin‘1 (—) +90° — 9) = 180°
2n 27,

l l
6 = sin™?! <?> + sin~?! (?) Proved.
1 2
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14. In right AABC, a perpendicular BD is drawn from the right angled vertex B to the
hypotenuse AC (as shown in the figure-25) then the length of perpendicular BD is given by the

following formula

AB X BC
D=——7—

AC =vVAD x DC

Proof: Let —BAC =A & —=ACB = C be two acute angles of right AABC. Drop a
perpendicular BD from right angled vertex B to the hypotenuse AC (as shown in the
figure-26).

Now, the area of right AABC is given as follows

1 1
Area of AABC = EAB X BC = EAC X BD

gl B,
Figure 25: A perpendicular BD is

drawn from right angled vertex
B to the hypotenuse AC

Figure-26: The perpendicular BD divides

1 1 right AABC into two similar right
EAB X BC = EAC X BD triangles AADB & ABDC
AB X BC = AC X BD
D= AB X BC 1
- AC - ( )
Now, in right triangles AADB & ABDC, we have
4BAD=4CBD=A, 4ABD=ZBCD=C, ZBDA=4BDC=900
Now, from Angle-angle-angle (A-A-A) similarity, right triangles AADB & ABDC are similar triangles
Taking the ratio of corresponding sides in similar right triangles AADB & ABDC (see above figure-26)
BD AD
DC  BD
(BD)? = AD x DC
BD =+VAD x DC U ¢4
From (1) & (2), we have
AB X BC
D = T VAD x DC Proved.
15. In AABC, three straight lines are drawn from the vertices A, B & C at an equal angle 6 A
which intersect each other at the point O. (as shown in the figure-27) then the angle 8 is A
given by the following formula
cotf = cotA + cotB + cotC
B % 6 C

Figure 27: Three straight lines are
drawn from vertices at an equal
angle 6 which intersect at point O
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Proof: Let AB = ¢,BC = a & AC = b in AABC. (as shown in the figure-28).

Now, applying Sine rule in AABC as follows

a c a sind
= = — =
sinA sinC ¢ sinC
In AAOB, we have
—AOB=n1— =ZABO— =BA0O=n—-60—-(A—-60)=n—A B ) o)
a

Now, applying Sine ruleinIn AAOB Figure-28: Three straight lines drawn at an equal
0B AB angle 0 from vertices of AABC meet at the point O

sin(4 — 8) - sin(m — A)

OB < )
sin(A —0)  sind N G )|

In ABOC, we have
—BOC=n— =0BC— =<=0CB=n—-(B—-6)—-6=n—B
Now, applying Sine rule in In ABOC

0B BC
sind  sin(w — B)

OB _a 5
snd _ SinB SRR ¢/))

Now, dividing (2) by (1) as follows

0B a
sinf _ sinB
0B ¢

sin(A—g@) sin4

sin(4 — 8) (a) sinA

sin @ c/sinB

sinA cos@ — cosAsinf (sin A) sin4

sin @ sinC/sinB
1 A cot 8 Ao sin? A
Smace cosa= sin B sin C
1 A cotd A sin? A
SINACOLY —COSA _ sinBsinC - _ .
sin A 7 sind (diving by sin A on both sides)
0 (A = sinA
€ cota = sin B sin C
sin(m — B — C) _
cotfd = cotA + —— (sinceA+B+C=m)
sinB sinC
sin(B + ()

cotd = cotA +
sinBsinC
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sinB cosC + cosBsinC
cotd = cotA +

sinBsinC

sinBcosC cosBsinC
cotd = cotA +

+
sinBsinC sinBsinC
cotf = cotA + cotC + cotB

cotf = cotA + cotB + cotC Proved.

16. A AABC is circumscribed by a circle & three altitudes AD, BE & CF are drawn from the
vertices A, B & C respectively which intersect each other at the point P (orthocentre). Now,
a straight line, drawn from the orthocentre P passing through the mid-point H of side BC,
when extended intersects the circumscribed circle at the point G (as shown in the figure-29)
then prove that straight line AG is always the diameter of circumscribed circle of AABC

Figure 29: Straight line PH when
extended intersects the circumscribed
circle at point G (BH = HC)

Proof: Consider any AABC with the vertices A(a, b), B(0,0) & C(c,0). Draw the altitudes AD & BE from the
vertices A & B respectively to get orthocentre P. Draw a straight line from

orthocentre P passing through the mid-point H of side BC which when YA
extended intersects the circumscribed circle at the point G. (as shown in

A (a:b)

the figure-30). Now, let the centre M (x;,y;) & radius r of circumscribed
circle hence its equation is given as follows

(x—x)?+ (@ —y)?=r?

Above circumscribed circle passes through the vertices A(a, b), B(0,0) &
C(c, 0) hence satisfying the above equation by coordinates of the vertices
as follows

0("0)8
(a—x)*+b—y)?=r? RN ¢ §)|

Figure 30: Straight line PH when extended intersects the

0= x)2 + (0 — y,)? = r? circumscribed circle at point G (BH = HC)

2+ y2=r? e e e e (2)
(c—x)*+(O0-y)?=r?
(c—x)*+y2=r? N )

Substracting (3) from (2) we get

2 2 2 2 _ .2 2
X2ty —(c—x) =y =r*—r
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c
2¢x;, —c2=0> X =3
Substracting (1) from (2) we get

2 +y2—(a—x) —Mb-y)=r2—1?

—a? + 2ax; — b% +2by,; =0

a? + b? — 2ax,

yl = 2b
c
_a2+b2—2a(§)_a2+b2—ac
= 2b -T2
M= )= c a>+b%—ac
M EW =T
Equation of altitude AD: x = a (since, BD = a) (see above figure-30)

Equation of altitude BE passing through the origin 0(0, 0) & perpendicular to the side AC by using slope-point
form of straight line

-1
y=0=3—4&-0)
a—c

(c—a)
b

y= X
Setting x = a in above equation, we get the coordinates of orthocentre P of AABC as follows

(c—a) _a(c—a)
b ‘T b

~P= (a, @)

Now, the equation straight line PH passing through the points P (a, a(cb_a)) & H (g, 0) is given as folows
a(c—a) _ 0
___b _¢
y—0= L < (x 2)
a(c —a)
= (2x —
y b(2a—c)( )

¢ a?+b?%-ac) . .
—,—) is the mid-
2 2b

point of the diameter AG passing through end-points A(a, b) & G hence the coordinates of end point G are
given from mid-point formula

Gz(Z(%)—a,z(W) —b)z(c—a,@)

Now, assume that AG is the diameter of circumscribed circle. Since the centre M(
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ala—c) a(c-a)

b(2a—c)

Now, substituting the coordinates of point G (c —a, ) into the equation of line PH: y =

(2x —¢)

as follows

ala —c¢) B a(c—a)

b " b(Ra-o) @le-a)=c)
ala—c) al(c—a)

b - b(2a —c) (€ —2a)
ala —c¢) B ala —c¢)

b b

LHS = RHS

Above result shows that the point G satisfies the equaion of line PH i.e. the point G lies on the line PH when we
assume the line AG to be the diameter of circumscribed circle. Therefore our assumption that AG is diameter
of circumscribed circle is correct. Hence, the line AG is always the diameter of circumscribed circle.
Proved.

17. A semi-circle of radius r & centre O is inscribed by a right AABC such that its A
diameter coincides with the leg BC & it touches hypotenuse AC (as shown in the fig-31).
If the length of short leg AB is a then the length of other leg BC (>AB) is given by the
following formula P

BC=—— Va>r>0) B ¥ )

Fig-31: Semi-circle of radius r and
centre O at BC, touches hypotenuse AC

Proof: Consider a right AABC with short leg AB = a inscribing a semicircle of ,FA
radius r & centre O lying at leg BC such that semicircle touches the
hypotenuse AC at point E. Join the point E to the centre O by a dotted straight
line (As shown in the fig-32). Let CD = x

E
Using Pythagoras theorem in right AOEC, a
/
/
/
OE? + CE?> = 0C? ;;/
/
/
r?2 + CE? = (r + x)? lB Q/ D (¢
K— ar > X =\
Fig-32: A semi-circle with radius 7 touches the
hypotenuse AC at point E such that AE = AB = a
CE=\(r+x)?—1? vP P
CE =+/x%+ 2rx U ¢ )

Since, the straight lines AB & AE are two tangents to the semi-circle from the external point A hence these are
equal in length i.e. AE = AB = a hence in right AABC, we have

AC = AE + CE

AC =a++x?+2rx (setting value of CE from (1) )

Using Pythagoras theorem in right AABC,
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AB? 4+ BC? = AC?
2
a’+ (2r +x)? = (a +/x% + 2rx)
a? +4r? +x? + 4rx = a? + x% + 2rx + 2a/x% + 2rx
472 4+ 2rx = 2a+/x% + 2rx
2

@2r2+rx)? = (a\/xz + er)

4r* +r2x? + 4r3x = a®’x? + 2a’rx

(@ —r)H)x?+2r(a®> = 2r’)x—4r* =0

Solving above quadratic equation for x as follows

—2r(a®—-2r?)+ \/(Zr(az — 21‘2))2 —4(a? —r?)(—4r%)
2(a? —r?)

X =

B —2r(a? — 2r?) + 2ry/(a? — 2r2)% + 4r2(a? — 12)
B 2(a? —1r?)

3 2r3 —a?r + rvat + 4r* — 4a%r? + 4a?r? — 4r*

a? —r?

2r3 —a’r +rva*
- a? —r2

2r3 — a’r + a®r

az — r2
Case 1: Taking positive sign, we get
2r3 —a’r+a’r 2r3
x = =
az — 2 az — 2

Case 1: Taking negative sign, we get

2r3 —a?r—a*r 2r3-2ad*r

X = = =-2r

a? —r2 T g2 —r2
But, the distance x can’t be negative i.e. x > 0 hence this value is discarded. Thus we get

2r3

X =—-————
aZ_rZ

Hence the length of other leg BC of right AABC is given as

BC=BD+DC =2r+x

2r3

BC =2r +

a2_r2

B 2a%r —2r3 + 2r3

a2_r2

BC
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2a’r
BC = -~ Proved
a*—r
18. In a square ABCD of each side a, all the vertices are joined to the mid-points of their xA B
opposite sides to obtain a small square PQRS (as shown in the fig-33). The length of each side
& the area of square PQRS, are given by the following formula N
@ P
P 4 & A fS PQRS 1(A fS ABCD)
== reao uare =—(Areao uare
Q=7 q Q 5 q A
E
D c
Fig-33: A square PQRS is obtained
by joining vertices to mid-points
of opposite sides of square ABCD
Proof: Consider a square ABCD with each side a. Now join the vertices A, B, C& D E B
to the respective mid-points G, H, E & F of their opposite sides to obain small square
PQRS . (As shown in the fig-34). Let PQ = x be each side of square PQRS. S
Since, in right AAQD, the straight lines HP & DQ are parallel hence from Thales
Theorem, we have )
H F
AP AH R
PQ  HD
e
AP HD )
—=— (Since, AH = HD)
¥— a
Fig-34: In right AAQD, the lines PH & DQ are
AP = x parallel since the lines BH & DF are parallel

to eachother. PQ =QR=RS =PS =x
=>AQ0 =AP+PQ=x+x=2x

Similarly, in right ADRC, the straight lines GQ & CR are parallel hence from Thales Theorem, we have

DQ DG

QR GC

DQ GC .

~ =Tc (Since, DG = GC)
DQ =x

Using Pythagoras theorem in right AAQD (See above fig-34),
AQ? + DQ? = AD?
(2x)? +x?> =a?

4x? + x* = a?
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Proved

u-||9N

1
=z (Area of square ABCD)

19. Four quarter-circles each with a radius a & centre at vertex of a square ABCD of each
side a , are drawn which intersect one another at four distinct points P, Q, R & S (as shown
in the fig-35). The length of each side of square PQRS, the angle exerted by side PQ at the
vertex D & the area 4 bounded by four quarter-circles are given by the following formula

PQ:%(\/E—\/E), 4PDQ=% &A=(g+1—\/§)a2

Proved
B

S
¥ = o =N

Fig-35: Four quarter-circles each
with a radius a & centre at vertex,
intersect one another at P, Q, R, S

Proof: Consider a square ABCD of each side a such that its vetrex D is at the origin O ba

B(a.a)

in XY-plane & the sides CD & AD coincide with X & Y axes respectively. Now, draw  A(o,a)
four identical quarter-circles each with a radius a & center at a vertex of square

ABCD which intersect one another at four distinct points P, Q, R & S. Now join the
vertices P, Q, R & S by dotted lines & drop a perpendicuar OM to the side PQ. (As

shown in the fig-36).

Equation of circle with center at the origin O i.e. D(0, 0) & radius a is given as

x? +y?=aq? R ¢ §)

Similarly, equation of circle with center at vertex A(0, a) & radius a is given as

C(a0) ;

Fig-36: Square ABCD of each side a is drawn

X+ (y—a)®=ad?
x*+y?+a?—2ay =a?
x2+y?2—2ay=0 VR ¢))
Similarly, equation of circle with center at vertex C(a, 0) & radius a is given as
(x—a)+y?=a?
2

x*+a*-2ax+y*=a

x2+y?—2ax=0 TR )

in XY-plane such that its vertex D is at origin
O and sides CD & AD coincide with x & v axes
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Now, solve (1) & (2) by subtituting value of x? + y2 from (1) into (2) as follows

2—2ay=0 > =2
a y y >

Substituting y = % in (1) as follows

av3

x2+(%)2=a2 = x=—

Thus, we get coordinates of point of intersection Q as follows

_(aV3 a
¢ =<T'E>

Similarly, solve (1) & (3) by subtituting value of x? + y? from (1) into (3) as follows
a
a’?—-2ax=0 = x=z

Substituting x = % in (1) as follows

(%)2+y2=a2 = y=%§

Thus, we get coordinates of point of intersection P as follows

fa a3
P=<E'T>

Now, using distance formula, the length of line PQ with end points P = (%,%3) &Q = (aT«/?‘%) is given as
2 2
PO = av3d a N a av3
¢= 2 2 2 2
a 2 2
Po=2 |(VF-1)"+(V3-1)
a —1)V2
po - =1V
2
a
PQ = 2 (V6—-+2) Proved

Now, in right ADMP (see above fig-36)

a
. _PM_PQ/2_PQ 7(V6-V2) V-2
smzPDM—ﬁ— T g 3 = 2

%—ﬁ)z V243

= c0s = PDM = +/1 — sin?=PDM = 1—( Z =—

. sin=PDQ = sin2—=PDM (since, == PDQ = 2~ PDM)
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sin=PDQ = 2 sin = PDM cos = PDM

va—ﬁ) (Jm)

in ==PDQ =2
sin Q ( 2 >

|62’z +v3)

sin == PDQ = 2
J(6+ 2-4v3)(2++3)
sin = PDQ = 7
\/4(2 —v3)(2++V3)
sin == PDQ = 7
2v4 -3
sin == PDQ = 7
1
sin == PDQ = >
s
= PDQ = 5 proved

Now, the area of segment of circle bounded by the arc PQ & chord PQ (See above fig-36) is

= Area of sector DPQD — Area of isosceles APDQ

1 1.
=3 (=PDQ)a? — Eaz sin —<PDQ

1 T
2 6

Hence, the area of region bounded by four intersecting quarter-circles (see above fig-36) is

= 4(Area of segment bounded by arc PQ & chord PQ) + Area of square PQRS

- 4(%(%—1)a2>+ <§(\/€—\/§)>2

(3-1) 2+%(6+2—4\/§)a2

3

(g— 1) a? + (2 —V3)a?

(g—1+2—\/§)a2
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= (g +1-— \/§) a? proved

20. A quarter-circle with a radius a & centre at vertex A & a semi-circle with a radius a/z & )

centre at mid-point of side CD of square ABCD of each side a , are drawn which intersect each
other at two distinct points (as shown in the fig-37). The area A (as shaded in fig-37) bounded

by quarter-circle, semicircle & diagonal BD is given by the following formula

A= (en-s =357 )
—8 T sin 5

Proof: Consider a square ABCD of each side a such that its vetrex D is at the origin O in
XY-plane & the sides CD & AD coincide with X & Y axes respectively. Now, draw a
quarter-circle with a radius a & center at a vertex A & a semi-circle with a radius a/z &

centre at mid-point M of side CD of square ABCD which intersect each other at two
distinct points O & Q. Now drop a perpendicuar PM from P to the side CD which divides
the bounded area into two parts. (As shown in the fig-38).

Equation of circle with center at the mid-point M (%, 0) & radius %is given as

(=9 +o-0r =)
+y?—ax=0 . (D)
Similarly, equation of circle with center at vertex A(0, a) & radius a is given as
X+ (y—a)=ad?
x2+y%+a?—2ay =ad?
x2+y2—2ay=0 e e e e e (2)

Substituting x? + y2 = ax from (1) into (2) as follows
x
ax —2ay=0 = y=5

Now, substituting y = x/2 into (1) as follows

x2+(§)2—ax=0

2 — oy — _ota_ _,2a
5x 4ax—0=>x—0,5:y—0,5

=G wom(2)

Now, divide the bounded region into two parts out of which (See above fig-38 above)

c
DK a A

Fig-37: The shaded region is
bounded by a quarter-circle, a
semi-circle & diagonal BD

RLK
A(o.a) B(aa)
P
i Q
i Al
g L
5 il 01 %
D(oro) M(Z.0) Glae)x

Fig-38: Two elementary rectangular slabs
sweep the area bounded by a semi-
circle, a quarter circle & diagonal BD in
square ABCD of each side a
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1. One part is bounded by the diagonal BD: y =x (V0 < x,y < a) & the quarter circle: y = a — Va? — x?
(V0 <x,y<a)fromeq(2) &

2. Other part is bounded by semi-circle:y = vax —x2 (V0 <x <a, 0 <y <a/2)fromeq(l) & the quarter
circle:y=a—va?—x? (V0 <x,y < a) fromeq(2)

Consider two vertical elementary rectangular slabs to compute the area bounded by a semi-circle, a quarter-
circle & diagonal BD (as shown in the fig-38 above). Using integration with proper limits, the bounded area A is
given as follows

a/2 4a/5
Azf (x—(a—\/az—x2)>dx+f (Vax—xz—(a—\/az—xz))dx
0 a/2
a/2 a/2 4a/5 4a/5
=f (x—a)dx+f \/az—xzdx+f (\/ax—xz—a)dx+f Jaz —x?dx
0 0 a/2 a/2

a/2 4a/5 4a/5
=f (x—a)dx+j (\/ax—xz—a)dx+j Vaz —x?%dx
0 0

a/2

x2 a/2 4a/5 a2 an 2 4a/5
——ax]0 +L/2 (E) _(X_E) —a dx+j0 Ja? —x%dx

a 4a/5
2 2

2 2 — =
[ -5) Be J -- 3  (E

2 a/2
1 1 x 4(1/5
_ 2 _ 42 1 _q2cin-1(2
+[2x a X +2a sin (a)]o

4a a
-3a® |1/4a a\ |[a\2 [(4a a\® 1 ,a\2 T3 4a a
— | _ _ N R I sa—1 _ - _
g T 2(5 2)\/(2) (5 2) +2(2) s g a<5>+a(2)
1 /4 4a\* 1 da
a a ) e
—_ — 2 | — A2 -1 2
+2<5) a (5) Foatsin o
_—3a2+ 1<3a)<2a>+a2 - (3) 3a? N 1<4a) <3a)+a2 _— (4)
=78 T2\10/\5) T8 ) "0 | T |2\5 /5 ) T 5
_ —3a? 6a2+a2 ) <3>+6a2+a2 _1<4)
g8 25 8" \5) T 25 T 5
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(oo @ reo (@)= Q) (o s (Y=o (2)
~2 ()33 Q) (e, st 5)+ o (5)=3)

—“2(2 335 (3)) d
=g \2r sin™ (¢ prove
21. If d is the distance between the centres A & B of two circles having radii r; &1, P

respectively (as shown in the fig-39) then the lengths of open common tangent PQ &
cross common tangent RS are given by the following formula

PQZﬂdZ—(Tl—TZ)Z Vd>|1"1—1"2|&
——d————

RS = /dz —(ry + rz)z vd>a,+ry) Fig-39: Open tangent PQ & cross tangent

RS are drawn on two circles with radii 7,

Both open & cross common tangents can be simultaneously drawn onlyifd > (r; + 15) &, ata distance d b/w their centres

Proof: Consider two circles with centres A & B and radii 1; & 1, respectively P
at a distance d between their centres A & B. Now, draw the open common
tangent PQ to the circles & join the points P and Q to the centres A & B
respectively by dotted straight lines. Join the centres A & B by a dotted
straight line & drop the perpendicular BM from centre B to the radial line
PA (As shown in the fig-40). Thus we get a rectangle PQBM in which

BM =PQ, PM=QB=r,

~AM=PA—-PM =7 —r, Fig-40: A Perpendicular BM is drawn from B to radial
line AP suchthat PM = QB =1, &AM =1, — 1,
Now, using Pythagoras Theorem in right AAMB as follows

AM? + BM? = AB?
(rp, —1)?+ PQ? =d? (since, BM = PQ)
PQ*=d*—(r, —1,)*
d? — (r, —rp)? proved

Similarly, consider two circles with centres A & B and radii ;& 1, respectively at a
distance d between their centres A & B. Now, draw the cross common tangent RS
to the circles & join the points R and S to the centres A & B respectively by dotted
straight lines. Join the centres A & B by a dotted straight line & drop the
perpendicular BM from centre B to the extended radial line AR (As shown in the
fig-41). Thus we get a rectangle RSBM in which

BM =RS, RM=SB=m,
Fig-41: A Perpendicular BM is drawn from
centre B to the extended radial line AR such
that RM =SB =1, &AM =1+

~AM =AR+RM =1, +1, a 2 1+72
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Now, using Pythagoras Theorem in right AAMB (see fig-41 above) as follows
AM? + BM? = AB?
(r; +1,)%? + RS? = d? (since, BM = RS)
RS?2 =d? — (1, +1,)?

RS =./d?> — (r; +1,)? proved

Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India Dec, 2014
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