Solid angle subtended by a regular n-gonal right pyramid (solid or hollow) at its apex

(Application of HCR's Theory of Polygon)

Mr Harish Chandra Rajpoot

Master of Technology, IIT Delhi

Introduction: Here we are to derive the formula for finding out the solid angle subtended by a regular n gonal right pyramid at its apex by using formula of solid angle subtended by a regular n-polygon at any point lying on the perpendicular passing through its centre which has already been derived in HCR's Theory of Polygon. The solid angle subtended by a regular n-gonal right pyramid will be derived in terms of apex angle α (i.e. angle between any two consecutive lateral edges meeting at the apex) \& the number n of sides in regular polygonal base of the right pyramid.

Derivation: Let there be a right pyramid (solid or hollow) with normal height ' H ', apex point ' P ', angle between any two consecutive lateral edges ' α ' \& base as a regular polygon with ' n ' no. of the sides each of length ' a ' (as shown in the figure-1), the upper part shows the isometric front view \& lower one the top view)

Now, join centre 'O' of the base to all the vertices $A_{1}, A_{2}, A_{3} \ldots \ldots \ldots . A_{n}$ of the regular polygonal base to obtain n number of congruent isosceles triangles (As shown in figure-1).

Consider an isosceles $\triangle A_{1} O A_{2}$ \& drop the perpendicular OM to the midpoint ' M ' of side $A_{1} A_{2}$ of regular polygonal base to obtain two congruent right triangles $\triangle A_{1} M O \& \Delta A_{2} M O$

In right $\Delta A_{1} M O$ (see lower part in fig-1)

$$
\begin{aligned}
\tan \angle A_{1} O M & =\frac{A_{1} M}{O M} \\
\tan \frac{\pi}{\mathrm{n}} & =\frac{\left(\frac{a}{2}\right)}{\mathrm{OM}} \\
\mathrm{OM} & =\frac{a}{2} \cot \frac{\pi}{\mathrm{n}}
\end{aligned}
$$

In right $\triangle P M A_{1}$ (see upper part in above fig-1)

$$
\begin{aligned}
\tan \angle A_{1} P M & =\frac{A_{1} M}{P M} \\
\tan \frac{\alpha}{2} & =\frac{\left(\frac{a}{2}\right)}{P M} \\
P M & =\frac{a}{2} \cot \frac{\alpha}{2}
\end{aligned}
$$

Figure 1: A perpendicular PM is dropped from apex P
to the mid-point M of side $A_{1} A_{2}$ of base of regular n -
Figure 1: A perpendicular $P M$ is dropped from apex P
to the mid-point M of side $A_{1} A_{2}$ of base of regular n gonal right pyramid to obtain a right $\triangle P M A_{1}$

By joining the point ' P ' to the centre ' O ' and the point ' M ', we obtain a right $\triangle P O M$ (as shown in figure-2)

In right $\triangle P O M$

$$
\begin{aligned}
P M^{2} & =O P^{2}+O M^{2} \\
\left(\frac{a}{2} \cot \frac{\alpha}{2}\right)^{2} & =H^{2}+\left(\frac{a}{2} \cot \frac{\pi}{n}\right)^{2} \\
H^{2} & =\frac{a^{2}}{4}\left(\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}\right) \\
\boldsymbol{H} & =\frac{\boldsymbol{a}}{\mathbf{2}} \sqrt{\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}}
\end{aligned}
$$

Figure 2: $P O=H$ is the normal height of n-gonal right pyramid

Above is the general formula to compute the normal height of a regular n-gonal right pyramid when apex angle α, number of sides $n \&$ length of each side a of regular polygonal base are known.

The solid angle ($\omega_{\text {pyramid }}$) subtended by the regular n-gonal right pyramid at its apex P will be equal to the solid angle ($\omega_{\text {polygon }}$) subtended by regular n-gon $A_{1} A_{2} A_{3} \ldots . A_{n}$ of each side a, at the apex P lying a normal height H from the centre ' O ' which is given by the formula of HCR's Theory of Polygon as follows

$$
\omega_{\text {polygon }}=2 \pi-2 n \sin ^{-1}\left(\frac{2 H \sin \frac{\pi}{n}}{\sqrt{4 H^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \quad \forall(n \in N \& n \geq 3)
$$

Now, setting the value of H in the above general formula of solid angle, we get the solid angle subtended by the regular n-gonal right pyramid at its apex

$$
\begin{aligned}
\omega_{\text {pyramid }} & =2 \pi-2 n \sin ^{-1}\left(\frac{2\left(\frac{a}{2} \sqrt{\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}}\right) \sin \frac{\pi}{n}}{\sqrt{4\left(\frac{a}{2} \sqrt{\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}}\right)^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\frac{a \sin \frac{\pi}{n} \sqrt{\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}}}{\sqrt{a^{2} \cot ^{2} \frac{\alpha}{2}-a^{2} \cot ^{2} \frac{\pi}{n}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\frac{a \sin \frac{\pi}{n} \sqrt{\frac{1}{\tan ^{2} \frac{\alpha}{2}}-\frac{1}{\tan ^{2} \frac{\pi}{n}}}}{\operatorname{acot} \frac{\alpha}{2}^{2}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\frac{a \sin \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}}{a \operatorname{acot} \frac{\alpha}{2} \tan \frac{\alpha}{2} \tan \frac{\pi}{n}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi-2 n \sin ^{-1}\left(\frac{\sin \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}}{\left(\frac{\sin \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}\right)
\end{aligned}
$$

Hence, the solid angle (ω) subtended at the apex by any right pyramid with normal height \boldsymbol{H}, base as a regular polygon with n number of sides each of length a and the apex angle α (i.e. angle between any two consecutive lateral edges), is given by the following formula

$$
\omega=2 \pi-2 n \sin ^{-1}\left(\frac{2 H \sin \frac{\pi}{n}}{\sqrt{4 H^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right)=2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}\right)
$$

$$
\text { Where, } \mathrm{n} \in \mathrm{~N}, \mathrm{n} \geq 3 \& 0 \leq \alpha \leq \frac{2 \pi}{\mathrm{n}}
$$

And the relation among the apex angle ' α ', side of regular n-gonal base $a \&$ normal height ' H ' of the right pyramid, is given by the above equation (as highlighted in green colour above) as follows

$$
H=\frac{a}{2} \sqrt{\cot ^{2} \frac{\alpha}{2}-\cot ^{2} \frac{\pi}{n}}
$$

Thus, any of above formula can be used to compute the solid angle subtended by a regular n-gonal right pyramid at its vertex when

1) $\mathrm{H}=$ normal height, $a=$ length of each side $\& \mathrm{n}=$ number of sides of regular polygonal base are known or
2) $\alpha=$ apex angle $\& n=$ number of sides of regular polygonal base of right pyramid are known.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (M Tech, Production Engineering)
Indian Institute of Technology Delhi
22 July, 2019
Email:hcrajpoot.iitd@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

