Solid angle subtended by a rectangular right pyramid (solid/hollow) at its apex

(Application of HCR's Theory of Polygon)

Mr Harish Chandra Rajpoot

Master of Technology, IIT Delhi

Introduction: Here we are to derive the formula for finding out the solid angle subtended by a rectangular right pyramid at its apex by using formula of solid angle subtended by a rectangular plane at any point lying on the perpendicular passing through its centre which has already been derived in HCR's Theory of Polygon. The solid angle subtended by a rectangular right pyramid will be derived in terms of apex angles $\alpha \& \beta$ (i.e. angles between two pairs of consecutive lateral edges meeting at the apex of rectangular right pyramid).

Derivation: Let there be a right pyramid (solid or hollow) with apex point ' P ' \& base as a rectangle ABCD such that the angles between two pairs of consecutive lateral edges PA \& PB and PB \& PC are α and β respectively (as shown in the figure-1).

Now, drop the perpendiculars PO \& PM on the rectangular base $A B C D$ \& side $A B$ respectively \& join the diagonals $A C \& B D$ of rectangular base ABCD (as shown by dotted lines in fig-1). Let a be the length of each of four equal lateral edges PA, PB, PC \& PD of right pyramid.

In right $\triangle P M A$, (see triangular face APB of right pyramid in fig-1)

$$
\begin{aligned}
\sin \angle A P M & =\frac{A M}{A P} \Rightarrow \sin \frac{\alpha}{2}=\frac{A M}{a} \\
A M & =a \sin \frac{\alpha}{2} \\
\therefore A B & =C D=2 A M=2 a \sin \frac{\alpha}{2}
\end{aligned}
$$

Fig-1: Perpendiculars PO \& PM are dropped from apex P to the centre O of base $A B C D$ \& mid-point M of side $A B$ in rectangular right pyramid

Similarly, in isosceles $\triangle P B C$, it can be proved by dropping a perpendicular from apex P to the side BC ,

$$
B C=A D=2 a \sin \frac{\beta}{2}
$$

Using Pythagorean theorem in right $\triangle A B C$,

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=\left(2 a \sin \frac{\alpha}{2}\right)^{2}+\left(2 a \sin \frac{\beta}{2}\right)^{2}=4 a^{2}\left(\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}\right) \\
& A C=\sqrt{4 a^{2}\left(\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}\right)}=2 a \sqrt{\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}} \\
& A O=\frac{A C}{2}=\frac{2 a \sqrt{\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}}}{2}=a \sqrt{\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}}
\end{aligned}
$$

Using Pythagorean theorem in right $\triangle P O A$ (see above fig-1),

$$
P A^{2}=A O^{2}+P O^{2} \Rightarrow P O=\sqrt{P A^{2}-A O^{2}}
$$

$$
\begin{aligned}
P O & =\sqrt{a^{2}-\left(a \sqrt{\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}}\right)^{2}} \\
& =a \sqrt{1-\sin ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}} \\
& =a \sqrt{\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}}
\end{aligned}
$$

Now, the solid angle ($\omega_{\text {pyramid }}$) subtended by the rectangular right pyramid at its apex P will be equal to the solid angle ($\omega_{\text {rectangle }}$) subtended by rectangle ABCD of length and width $l \& b$, at the apex P lying a normal height h from the centre ' O ' which is given by the general formula of HCR's Theory of Polygon as follows

$$
\omega_{\text {rectangle }}=4 \sin ^{-1}\left(\frac{l b}{\sqrt{\left(l^{2}+4 h^{2}\right)\left(b^{2}+4 h^{2}\right)}}\right)
$$

Now, setting the value of normal height $h=P O$, length $l=A B \&$ width $b=B C$ in the above general formula of solid angle, we get the solid angle subtended by the rectangular right pyramid at its apex

$$
\begin{aligned}
\omega_{\text {pyramid }} & =4 \sin ^{-1}\left(\frac{(A B)(B C)}{\sqrt{\left((A B)^{2}+4(P O)^{2}\right)\left((B C)^{2}+4(P O)^{2}\right)}}\right) \\
& =4 \sin ^{-1}\left(\frac{\left(2 a \sin \frac{\alpha}{2}\right)\left(2 a \sin \frac{\beta}{2}\right)}{\sqrt{\left(\left(2 a \sin \frac{\alpha}{2}\right)^{2}+4\left(a \sqrt{\left.\left.\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}\right)^{2}\right)\left(\left(2 a \sin \frac{\beta}{2}\right)^{2}+4\left(a \sqrt{\left.\left.\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}\right)^{2}\right)}\right)\right.}\right)\right.}} \begin{array}{l}
\\
\end{array}\right. \\
& =4 \sin ^{-1}\left(\frac{4 a^{2} \sin \frac{\alpha}{2} \sin \frac{\beta}{2}}{\left.\sqrt{\left(4 a^{2}\right)^{2}\left(\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}\right)\left(\sin ^{2} \frac{\beta}{2}+\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\beta}{2}\right)}\right)}\right) \\
& =4 \sin ^{-1}\left(\frac{\left.\sin \frac{\alpha}{2} \sin ^{\left(1-\sin \frac{\beta}{2} \frac{\beta}{2}\right)\left(\cos ^{2} \frac{\alpha}{2}\right)}\right)}{\left.\sqrt{\left(\cos ^{2} \frac{\beta}{2}\right)\left(\cos ^{2} \frac{\alpha}{2}\right)}\right)}\right. \\
& =4 \sin ^{-1}\left(\frac{\sin \frac{\alpha}{2} \sin \frac{\beta}{2}}{\cos \frac{\alpha}{2} \cos \frac{\beta}{2}}\right) \\
& =4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)
\end{aligned}
$$

Hence, the solid angle (ω) subtended at the apex by any right pyramid with a rectangular base $\&$ the apex angles $\boldsymbol{\alpha} \& \boldsymbol{\beta}$ (i.e. angles between two pairs of consecutive lateral edges meeting at apex), is given by the following formula

$$
\omega=4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)
$$

$$
\text { Where, } \mathbf{0}<\boldsymbol{\alpha}+\boldsymbol{\beta}<\boldsymbol{\pi}
$$

Important deduction: The solid angle subtended at the apex by a right pyramid with a square base $\&$ the apex angle α is obtained by substituting $\beta=\alpha$ in above general equation of solid angle, we get

$$
\begin{aligned}
& \omega=4 \sin ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\alpha}{2}\right) \\
& \omega=4 \sin ^{-1}\left(\tan ^{2} \frac{\boldsymbol{\alpha}}{\mathbf{2}}\right) \\
& \text { Where, } \quad \mathbf{0}<\boldsymbol{\alpha}<\frac{\boldsymbol{\pi}}{\mathbf{2}}
\end{aligned}
$$

The above value of solid angle subtended at apex by a square right pyramid can also be proved by substituting $n=$ number of sides of square base $=4$ in general formula of solid angle subtended at apex by a regular n gonal right pyramid (which has been derived in the paper 'solid angle subtended by a regular n-gonal right pyramid at its apex' by the author), given as follows

$$
\begin{aligned}
\omega & =2 \pi-2 n \sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{\tan ^{2} \frac{\pi}{n}-\tan ^{2} \frac{\alpha}{2}}\right) \\
& =2 \pi-2(4) \sin ^{-1}\left(\cos \frac{\pi}{4} \sqrt{\tan ^{2} \frac{\pi}{4}-\tan ^{2} \frac{\alpha}{2}}\right) \quad \quad \text { (setting } n=4 \text { for square base) } \\
& =2 \pi-8 \sin ^{-1}\left(\frac{1}{\sqrt{2}} \sqrt{1-\tan ^{2} \frac{\alpha}{2}}\right) \\
& =2 \pi-4 \sin ^{-1}\left(2 \frac{1}{\sqrt{2}} \sqrt{1-\tan ^{2} \frac{\alpha}{2}} \sqrt{1-\left(\frac{1}{\sqrt{2}} \sqrt{1-\tan ^{2} \frac{\alpha}{2}}\right)^{2}}\right) \quad\left(2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\right) \\
& =2 \pi-4 \sin ^{-1}\left(2 \frac{1}{\sqrt{2}} \sqrt{1-\tan ^{2} \frac{\alpha}{2}} \frac{1}{\sqrt{2}} \sqrt{1+\tan ^{2} \frac{\alpha}{2}}\right) \\
& =2 \pi-4 \sin ^{-1}\left(\sqrt{1-\tan ^{4} \frac{\alpha}{2}}\right) \\
& =2 \pi-4 \cos ^{-1}\left(\sqrt{1-\left(\sqrt{1-\tan ^{4} \frac{\alpha}{2}}\right)^{2}}\right) \\
& =2 \pi-4 \cos ^{-1}\left(\sqrt{1-1+\tan ^{4} \frac{\alpha}{2}}\right) \\
& =2 \pi-4 \cos ^{-1}\left(\tan ^{2} \frac{\alpha}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =4\left(\frac{\pi}{2}-\cos ^{-1}\left(\tan ^{2} \frac{\alpha}{2}\right)\right) \\
& =4\left(\sin ^{-1}\left(\tan ^{2} \frac{\alpha}{2}\right)\right) \\
& =4 \sin ^{-1}\left(\tan ^{2} \frac{\alpha}{2}\right)
\end{aligned}
$$

$$
\text { (Since, } \left.\frac{\pi}{2}-\cos ^{-1} x=\sin ^{-1} x\right)
$$

Proved.

Note: Above articles had been derived \& illustrated by Mr H.C. Rajpoot (M Tech, Production Engineering)

Email:hcrajpoot.iitd@gmail.com

Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

