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Introduction: Here we are to derive the formula for finding out the solid angle subtended by a rectangular
right pyramid at its apex by using formula of solid angle subtended by a rectangular plane at any point lying on
the perpendicular passing through its centre which has already been derived in HCR’s Theory of Polygon. The
solid angle subtended by a rectangular right pyramid will be derived in terms of apex angles a & S (i.e. angles
between two pairs of consecutive lateral edges meeting at the apex of rectangular right pyramid).

Derivation: Let there be a right pyramid (solid or hollow) with apex point ‘P’ & base as a AP
rectangle ABCD such that the angles between two pairs of consecutive lateral edges PA & PB i
and PB & PC are a and f respectively (as shown in the figure-1). I
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Now, drop the perpendiculars PO & PM on the rectangular base ABCD & side AB respectively !
& join the diagonals AC & BD of rectangular base ABCD (as shown by dotted lines in fig-1). Let E
a be the length of each of four equal lateral edges PA, PB, PC & PD of right pyramid. !
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\/ﬂ’:?’
Pra S
e \ =
. AM . a AM Ak h ~~Npg
sin ==APM =— = sin—=— M
AP 2 a Fig-1: Perpendiculars PO & PM are
dropped from apex P to the centre
AM = asing O of base ABCD & mid-point M of
2 side AB in rectangular right pyramid
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Similarly, in isosceles APBC , it can be proved by dropping a perpendicular from apex P to the side BC,

BC = AD = 2asin'[2—g

Using Pythagorean theorem in right AABC,
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Using Pythagorean theorem in right APOA (see above fig-1),
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Now, the solid angle (wyyramia) Subtended by the rectangular right pyramid at its apex P will be equal to the
solid angle (Wrecrangre) Subtended by rectangle ABCD of length and width [ & b, at the apex P lying a normal
height h from the centre ‘O’ which is given by the general formula of HCR’s Theory of Polygon as follows
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Now, setting the value of normal height h = PO, lengthl = AB & width b = BC in the above general formula
of solid angle, we get the solid angle subtended by the rectangular right pyramid at its apex
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Hence, the solid angle (w) subtended at the apex by any right pyramid with a rectangular base & the apex

angles a & B (i.e. angles between two pairs of consecutive lateral edges meeting at apex), is given by the
following formula

a P
= 4sin! (tan—tan—)
7 i > 2
Where, 0 < a+B<m
Important deduction: The solid angle subtended at the apex by a right pyramid with a square base & the apex
angle a is obtained by substituting f = « in above general equation of solid angle, we get
a a
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w = 4sin (tan > tan 2)

w = 4sin~! (tan2 %)
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Where, 0 < a < )
The above value of solid angle subtended at apex by a square right pyramid can also be proved by substituting
n = number of sides of square base = 4 in general formula of solid angle subtended at apex by a regular n-

gonal right pyramid (which has been derived in the paper ‘solid angle subtended by a regular n-gonal right
pyramid at its apex’ by the author ), given as follows
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4 (g —cos™?! (tan2 %))

=4 (sin‘1 (tan2 %)) (Since, g —cos lx = sin‘lx)
= 4sin?! (tan2 %) Proved.
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