Regular N-gonal Right Antiprism: Application of HCR's Theory of Polygon

Harish Chandra Rajpoot
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India-400076

Email: hcrajpoot@iitb.ac.in
Date: 23-05-2023

Abstract

A regular n-gonal right antiprism is a semiregular convex polyhedron which has 2 n identical vertices all lying on a sphere, $4 n$ edges, and $(2 n+2)$ faces out of which 2 are congruent regular n-sided polygons, and $2 n$ are congruent equilateral triangles such that all the faces have equal side. The equilateral triangular faces meet the regular polygonal faces at the common edges and vertices alternatively such that three equilateral triangular faces meet at each of 2 n vertices. This paper presents, in details, the mathematical derivations of the generalized and analytic formula which are used to determine the different important parameters in terms of edge length, such as normal distances of faces, normal height, radius of circumscribed sphere, surface area, volume, dihedral angles between adjacent faces, solid angle subtended by each face at the centre, and solid angle subtended by polygonal antiprism at each of its 2 n vertices using HCR's Theory of Polygon. All the generalized formulae have been derived using simple trigonometry, and 2D geometry which are difficult to derive using any other methods.

Keywords: Regular n-gonal right antiprism, generalized formula of antiprism, solid angles, dihedral angles

1. Introduction

A regular n -gonal right antiprism has 2 n congruent equilateral triangular faces, 2 identical parallel regular n -gonal base faces, 2 n identical vertices all lying on a sphere, and 4 n edges such that two opposite and parallel regular polygons are relatively rotated through an angle of π / n about the axis passing through their centres and perpendicular to their planes. It is a convex polyhedron (i.e. internal angle between any two adjacent faces is less than π) which has each of its $2 \mathrm{n}+2$ faces as a regular polygon and all its 2 n vertices identical therefore it is called a semiregular polyhedron. It is also known as uniform n-antiprism, uniform, equilateral antiprism [1]. (as shown in the Figure-1 below).

Figure-1: A regular n-gonal right antiprism consists of two identical, opposite and parallel regular polygons each with n no. of sides separated by a band of $2 n$ congruent equilateral triangles, $2 n$ identical vertices lying on a sphere and $4 n$ edges. All $2 n+2$ faces of the antiprism have a side a.

Depending on the number of sides of regular n-gonal face, a regular polygonal right antiprism has various geometric shapes which form an infinite family of antiprism. For $n=3$, the antiprism has its simplest form having $2 n+2=8$ equilateral triangular faces which is called triangular antiprism. It's also a regular tetrahedron [2]. (as shown in the Figure-2 below).

Figure-2: The various geometric shapes of a regular polygonal right antiprism form an infinite family. a) triangular right antiprism, b) square right antiprism, and c) pentagonal right antiprism

2. Derivation of parameters

Let's consider a regular n-gonal right antiprism with edge length a (as shown in the Figure-2) such that
$H=$ Normal height i.e. the normal distance between the regular n -sided polygonal faces of the right antiprism
$H_{n}=$ Normal distance of each regular polygonal face from the centre of the right antiprism
$H_{T}=$ Normal distance of each of 2 n congruent regular triangular faces from the centre of the right antiprism
$R_{o}=$ Radius of circumscribed sphere i.e. distance of each of 2 n identical vertices from the centre of the antiprism
$A_{s}=$ Surface area of the antiprism
$V=$ Volume of the antiprism
$\theta_{T T E}=$ Dihedral angle between any two adjacent equilateral triangular faces having a common edge
$\theta_{T T V}=$ Dihedral angle between equilateral triangular and regular polygonal faces having a common vertex
$\theta_{T P E}=$ Dihedral angle between equilateral triangular and regular polygonal faces having a common edge
$\theta_{T P V}=$ Dihedral angle between equilateral triangular and regular polygonal faces having a common vertex $\omega_{T}=$ Solid angle subtended by each regular triangular face at the centre of the right antiprism $\omega_{n}=$ Solid angle subtended by each regular n-sided polygonal face at the centre of the right antiprism $\omega_{V}=$ Solid angle subtended by the right antiprism at each of its 2 n identical vertices

2.1. Normal distance of regular \mathbf{n}-sided polygonal face from the centre

Let H_{n} be the normal distance of regular n-sided polygonal face from the centre O of the polygonal antiprism having edge length a. Now, the circum-radius of regular polygon $A_{1} A_{2} A_{3} \ldots \ldots A_{n-1} A_{n}$ with centre O_{1} (see the above Figure-2) is given as

$$
\sin \frac{\pi}{n}=\frac{M A_{1}}{O_{1} A_{1}} \Rightarrow O_{1} A_{1}=\frac{M A_{1}}{\sin \frac{\pi}{n}}=\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}
$$

In right $\Delta O O_{1} A_{1}$ (see the above Figure-2), applying Pythagorean theorem as follows

$$
\begin{align*}
& O O_{1} \\
&=\sqrt{\left(O A_{1}\right)^{2}-\left(O_{1} A_{1}\right)^{2}}=\sqrt{\left(R_{o}\right)^{2}-\left(\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}\right)^{2}} \tag{1}\\
& \Rightarrow H_{n}=\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}}
\end{align*}
$$

2.2. The solid angle subtended by regular n-sided polygonal face at the centre

The solid angle subtended by any polygonal plane, having n no. of sides each of length a, at any point lying on the perpendicular axis passing through the centre of polygon at a distance h is given by the generalized formula from HCR's Theory of Polygon [1] as follows

$$
\omega=2 \pi-2 n \sin ^{-1}\left(\frac{2 h \sin \frac{\pi}{n}}{\sqrt{4 h^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right)
$$

Now, substituting the corresponding value i.e. $h=H_{n}=$ normal distance of regular polygonal face from the centre O of the antiprism (as shown in the above Figure-2) in the above generalized formula, the solid angle ω_{n} subtended by each regular polygonal face at the centre O is obtained as follows

$$
\begin{aligned}
\omega_{n} & =2 \pi-2 n \sin ^{-1}\left(\frac{2 H_{n} \sin \frac{\pi}{n}}{\sqrt{4{H_{n}}^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right)=2 \pi-2 n \sin ^{-1}\left(\frac{2 \sqrt{R_{o}{ }^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}} \sin \frac{\pi}{n}}{\sqrt{4\left(\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}}\right)^{2}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\frac{\sqrt{4 R_{o}{ }^{2} \sin ^{2} \frac{\pi}{n}-4 \cdot \frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n} \sin ^{2} \frac{\pi}{n}}}{\sqrt{4 R_{o}{ }^{2}-4 \cdot \frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}+a^{2} \cot ^{2} \frac{\pi}{n}}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\frac{\sqrt{4 R_{o}{ }^{2} \sin ^{2} \frac{\pi}{n}-a^{2}}}{\sqrt{4 R_{o}^{2}-a^{2}\left(\operatorname{cosec}^{2} \frac{\pi}{n}-\cot ^{2} \frac{\pi}{n}\right)}}\right)=2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4 R_{o}^{2} \sin ^{2} \frac{\pi}{n}-a^{2}}{4 R_{o}{ }^{2}-a^{2}}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4\left(\frac{R_{o}}{a}\right)^{2} \sin ^{2} \frac{\pi}{n}-1}{4\left(\frac{R_{o}}{a}\right)^{2}-1}}\right)=2 \pi-2 n \sin ^{-1}\left(\sqrt{\left.\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}\right)}\right.
\end{aligned}
$$

$$
\begin{equation*}
\omega_{n}=2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right) \tag{2}
\end{equation*}
$$

Where, $x=R_{o} / a$ is some unknown ratio.

2.3. Normal distance of equilateral triangular face from the centre

Let H_{T} be the normal distance of equilateral triangular face from the centre O of the polygonal antiprism having edge length a. Now, the circum-radius of regular triangle with centre O_{2} (see the above Figure-2) is given as

$$
\sin \frac{\pi}{3}=\frac{M A_{1}}{O_{2} A_{1}} \Rightarrow O_{2} A_{1}=\frac{M A_{1}}{\sin \frac{\pi}{3}}=\frac{a}{2} \operatorname{cosec} \frac{\pi}{3}=\frac{a}{2} \cdot \frac{2}{\sqrt{3}}=\frac{a}{\sqrt{3}}
$$

In right $\Delta O O_{2} A_{1}$ (see the above Figure-2), applying Pythagorean theorem as follows

$$
\begin{align*}
O O_{2} & =\sqrt{\left(O A_{1}\right)^{2}-\left(O_{2} A_{1}\right)^{2}}=\sqrt{\left(R_{o}\right)^{2}-\left(\frac{a}{\sqrt{3}}\right)^{2}} \\
\Rightarrow H_{T} & =\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{3}} \tag{3}
\end{align*}
$$

2.4. The solid angle subtended by equilateral triangular face at the centre

Similarly, substituting the corresponding value i.e. $h=H_{T}=$ normal distance of equilateral triangular face ($n=$ 3) from the centre O of the antiprism (as shown in the above Figure-2) in the above generalized formula, the solid angle ω_{T} subtended by each equilateral triangular face at the centre O is obtained as follows

$$
\left.\begin{array}{rl}
\omega_{T} & =2 \pi-2(3) \sin ^{-1}\left(\frac{2 H_{T} \sin \frac{\pi}{3}}{\sqrt{4 H_{T}{ }^{2}+a^{2} \cot ^{2} \frac{\pi}{3}}}\right)=2 \pi-6 \sin ^{-1}\left(\frac{2 \sqrt{R_{o}{ }^{2}-\frac{a^{2}}{3}} \frac{\sqrt{3}}{2}}{\sqrt{4\left(\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{3}}\right)^{2}+a^{2}\left(\frac{1}{\sqrt{3}}\right)^{2}}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\frac{\sqrt{3} \sqrt{R_{o}{ }^{2}-\frac{a^{2}}{3}}}{\sqrt{4 R_{o}{ }^{2}-\frac{4 a^{2}}{3}+\frac{a^{2}}{3}}}\right)=2 \pi-6 \sin ^{-1}\left(\frac{\sqrt{3 R_{o}{ }^{2}-a^{2}}}{\sqrt{4 R_{o}{ }^{2}-a^{2}}}\right.
\end{array}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3 R_{o}{ }^{2}-a^{2}}{4 R_{o}{ }^{2}-a^{2}}}\right) ~\left(\sqrt{\frac{3\left(\frac{R_{o}}{a}\right)^{2}-1}{4\left(\frac{R_{o}}{a}\right)^{2}-1}}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right) .
$$

Where, $x=R_{o} / a$ is some unknown ratio.

2.5. Radius of circumscribed sphere (Circum-radius)

Since, a regular n-gonal right antiprism is a closed surface consisting of 2 regular n-sided polygonal faces and $2 n$ equilateral triangular faces therefore the sum of solid angles subtended by all the faces at the centre of polygonal antiprism must be equal to 4π sr according to HCR's Theory of Polygon [1]. Thus, the total solid angle subtended by all the faces at the centre O of the polygonal antiprism is given as follows
$2($ Solid angle subtended by polygonal face $)+2 n($ Solid angle subtended by triangular face $)=4 \pi$

$$
\begin{aligned}
& 2\left(\omega_{n}\right)+2 n\left(\omega_{T}\right)=4 \pi \\
& 2\left(2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)\right)+2 n\left(2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)\right)=4 \pi \\
& 4 \pi-4 n \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)+4 n \pi-12 n \sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)=4 \pi \\
& \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)+3 \sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)=\pi \\
& \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)+\sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)=2\left(\frac{\pi}{2}-\sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)\right) \\
& \cos ^{-1}\left(\sqrt{1-\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)^{2}} \sqrt{1-\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)^{2}}-\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}} \sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)=2 \cos ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right) \\
& \cos ^{-1}\left(\sqrt{\frac{4 x^{2}-1-4 x^{2} \sin ^{2} \frac{\pi}{n}+1}{4 x^{2}-1}} \sqrt{\frac{4 x^{2}-1-3 x^{2}+1}{4 x^{2}-1}}-\frac{\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}}{4 x^{2}-1}\right)=\cos ^{-1}\left(2\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)^{2}-1\right) \\
& \cos ^{-1}\left(\sqrt{\frac{4 x^{2} \cos ^{2} \frac{\pi}{n}}{4 x^{2}-1}} \sqrt{\frac{x^{2}}{4 x^{2}-1}}-\frac{\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}}{4 x^{2}-1}\right)=\cos ^{-1}\left(\frac{6 x^{2}-2-4 x^{2}+1}{4 x^{2}-1}\right) \\
& \cos ^{-1}\left(\frac{2 x^{2} \cos \frac{\pi}{n}}{4 x^{2}-1}-\frac{\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}}{4 x^{2}-1}\right)=\cos ^{-1}\left(\frac{2 x^{2}-1}{4 x^{2}-1}\right) \\
& \cos ^{-1}\left(\frac{2 x^{2} \cos \frac{\pi}{n}-\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}}{4 x^{2}-1}\right)=\cos ^{-1}\left(\frac{2 x^{2}-1}{4 x^{2}-1}\right) \\
& \frac{2 x^{2} \cos \frac{\pi}{n}-\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}}{4 x^{2}-1}=\frac{2 x^{2}-1}{4 x^{2}-1}
\end{aligned}
$$

$$
\begin{align*}
& 2 x^{2} \cos \frac{\pi}{n}-\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}-2 x^{2}+1=0 \quad\left(\forall|x| \neq \frac{1}{2}\right) \\
& 1-2 x^{2}\left(1-\cos \frac{\pi}{n}\right)=\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)} \\
& \left(1-2 x^{2}\left(1-\cos \frac{\pi}{n}\right)\right)^{2}=\left(\sqrt{\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right)}\right)^{2} \\
& 1+4 x^{4}\left(1-\cos \frac{\pi}{n}\right)^{2}-4 x^{2}\left(1-\cos \frac{\pi}{n}\right)=\left(4 x^{2} \sin ^{2} \frac{\pi}{n}-1\right)\left(3 x^{2}-1\right) \\
& 1+4 x^{4}\left(1-\cos \frac{\pi}{n}\right)^{2}-4 x^{2}\left(1-\cos \frac{\pi}{n}\right)=12 x^{4} \sin ^{2} \frac{\pi}{n}-3 x^{2}-4 x^{2} \sin ^{2} \frac{\pi}{n}+1 \\
& 12 x^{4} \sin ^{2} \frac{\pi}{n}-4 x^{4}\left(1-\cos \frac{\pi}{n}\right)^{2}+4 x^{2}\left(1-\cos \frac{\pi}{n}\right)-4 x^{2} \sin ^{2} \frac{\pi}{n}-3 x^{2}=0 \\
& x^{2}\left[4 x^{2}\left(3 \sin ^{2} \frac{\pi}{n}-\left(1-\cos \frac{\pi}{n}\right)^{2}\right)-4 \sin ^{2} \frac{\pi}{n}-4 \cos \frac{\pi}{n}+1\right]=0 \\
& 4 x^{2}\left(3 \sin ^{2} \frac{\pi}{n}-\left(1-\cos \frac{\pi}{n}\right)^{2}\right)-4 \sin ^{2} \frac{\pi}{n}-4 \cos \frac{\pi}{n}+1=0 \quad(\forall x \neq 0) \\
& 4 x^{2}\left(3-3 \cos ^{2} \frac{\pi}{n}-1-\cos ^{2} \frac{\pi}{n}+2 \cos \frac{\pi}{n}\right)=4-4 \cos ^{2} \frac{\pi}{n}+4 \cos \frac{\pi}{n}-1 \\
& 8 x^{2}\left(1+\cos \frac{\pi}{n}-2 \cos ^{2} \frac{\pi}{n}\right)=3+4 \cos \frac{\pi}{n}-4 \cos ^{2} \frac{\pi}{n} \\
& x^{2}=\frac{3+4 \cos \frac{\pi}{n}-4 \cos ^{2} \frac{\pi}{n}}{8\left(1+\cos \frac{\pi}{n}-2 \cos ^{2} \frac{\pi}{n}\right)}=\frac{\left(1+2 \cos \frac{\pi}{n}\right)\left(3-2 \cos \frac{\pi}{n}\right)}{8\left(1+2 \cos \frac{\pi}{n}\right)\left(1-\cos \frac{\pi}{n}\right)}=\frac{3-2 \cos \frac{\pi}{n}}{8\left(1-\cos \frac{\pi}{n}\right)} \\
& =\frac{3-2\left(1-2 \sin ^{2} \frac{\pi}{2 n}\right)}{8\left(1-1+2 \sin ^{2} \frac{\pi}{2 n}\right)}=\frac{1+4 \sin ^{2} \frac{\pi}{2 n}}{16 \sin ^{2} \frac{\pi}{2 n}}=\frac{1}{16}\left(4+\operatorname{cosec}^{2} \frac{\pi}{2 n}\right) \\
& x=\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}} \\
& \Rightarrow \frac{R_{o}}{a}=\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}} \\
& (\because x \neq 0) \\
& \left(\because \quad x=\frac{R_{o}}{a}\right) \\
& \therefore \quad \boldsymbol{R}_{\boldsymbol{o}}=\frac{\boldsymbol{a}}{\mathbf{4}} \sqrt{\mathbf{4}+\operatorname{cosec}^{2} \frac{\boldsymbol{\pi}}{2 \boldsymbol{n}}} \quad(\forall n \geq 3, n \in N) \tag{5}
\end{align*}
$$

The above $\mathrm{Eq}(5)$ is the generalized formula to analytically compute the radius of circuminscribed sphere on which all 2 n identical vertices of a regular n -gonal right antiprism with edge length a lie.

Now, substituting the value of R_{o} into $\mathrm{Eq}(1)$ above, the normal distance H_{n} of regular n -sided polygonal face from the centre O of the polygonal antiprism is obtained as follows

$$
H_{n}=\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}}=\sqrt{\left(\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2}-\frac{a^{2}}{4} \operatorname{cosec}^{2} \frac{\pi}{n}}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}-4 \operatorname{cosec}^{2} \frac{\pi}{n}}
$$

$$
\begin{align*}
& =\frac{a}{4} \sqrt{4+\frac{1}{\sin ^{2} \frac{\pi}{2 n}}-\frac{4}{\sin ^{2} \frac{\pi}{n}}}=\frac{a}{4} \sqrt{4+\frac{1}{\sin ^{2} \frac{\pi}{2 n}}-\frac{4}{4 \sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}}}=\frac{a}{4} \sqrt{4+\frac{1}{\sin ^{2} \frac{\pi}{2 n}}-\frac{1}{\sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}}} \\
& =\frac{a}{4} \sqrt{\frac{4 \sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}+\cos ^{2} \frac{\pi}{2 n}-1}{\sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}}}=\frac{a}{4} \sqrt{\frac{4 \sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{2 n}}{\sin ^{2} \frac{\pi}{2 n} \cos ^{2} \frac{\pi}{2 n}}}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \\
& \therefore H_{n}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \quad(\forall n \geq 3, n \in N) \tag{6}
\end{align*}
$$

The above $\mathrm{Eq}(6)$ is the generalized formula to analytically compute the normal distance of regular polygonal face from the centre of a regular n-gonal right antiprism having edge length a.

Now, substituting the value of R_{o} into $\mathrm{Eq}(3)$ above, the normal distance H_{T} of equilateral triangular face from the centre O of the polygonal antiprism is obtained as follows

$$
\begin{align*}
H_{T} & =\sqrt{R_{o}{ }^{2}-\frac{a^{2}}{3}}=\sqrt{\left(\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2}-\frac{a^{2}}{3}}=a \sqrt{\frac{1}{48}\left(12+3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-16\right)} \\
& =a \sqrt{\frac{1}{48}\left(3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4\right)}=\frac{a}{4 \sqrt{3}} \sqrt{3 \sec ^{2} \frac{\pi}{2 n} \cot ^{2} \frac{\pi}{2 n}-4}=\frac{a}{4 \sqrt{3}} \cot \frac{\pi}{2 n} \sqrt{3 \sec ^{2} \frac{\pi}{2 n}-4 \tan ^{2} \frac{\pi}{2 n}} \\
& =\frac{a}{4 \sqrt{3}} \cot \frac{\pi}{2 n} \sqrt{3 \sec ^{2} \frac{\pi}{2 n}-4\left(\sec ^{2} \frac{\pi}{2 n}-1\right)}=\frac{a}{4 \sqrt{3}} \cot \frac{\pi}{2 n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \\
\therefore \boldsymbol{H}_{\boldsymbol{T}} & =\frac{\boldsymbol{a}}{\mathbf{1 2}} \sqrt{9 \operatorname{cosec}^{2} \frac{\boldsymbol{\pi}}{2 \boldsymbol{2 n}}-\mathbf{1 2}}=\frac{\boldsymbol{a}}{\mathbf{4 \sqrt { 3 }}} \cot \frac{\boldsymbol{\pi}}{2 n} \sqrt{\mathbf{4 - \operatorname { s e c } ^ { 2 } \frac { \pi } { 2 n }}} \quad(\forall n \geq 3, n \in N) \tag{7}
\end{align*}
$$

The above $\mathrm{Eq}(7)$ is the generalized formula to analytically compute the normal distance of equilateral triangular face from the centre of a regular n -gonal right antiprism having edge length a.

2.6. Normal height of regular polygonal antiprism

The normal height H of the regular n-gonal right antiprism i.e. perpendicular distance between its two regular npolygonal faces is given as

$$
\begin{align*}
H & =2\left(O O_{1}\right)=2\left(H_{n}\right)=2\left(\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)=\frac{a}{2} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \\
\Rightarrow \boldsymbol{H} & =\frac{\boldsymbol{a}}{\mathbf{2}} \sqrt{\mathbf{4 - \operatorname { s e c } ^ { 2 } \frac { \boldsymbol { \pi } } { \mathbf { 2 n } }}} \quad(\forall n \geq 3, n \in N) \tag{8}
\end{align*}
$$

2.7. Surface area of regular polygonal antiprism

The total surface of a regular n-gonal right antiprism consists of two identical regular polygonal faces and 2 n identical equilateral triangular faces all with an equal side a. Therefore the total surface area of the regular polygonal antiprism with edge length a is the sum of all its $(2 n+2)$ faces, which is given as follows
$A_{s}=2($ Area of regular polygonal face $)+2 n($ Area of regular triangular face $)$

$$
\begin{aligned}
& =2\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)+\left.2 n\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)\right|_{n=3} \quad \text { (Where, } n=\text { number of sides in } \\
& =\frac{1}{2} n a^{2} \cot \frac{\pi}{n}+2 n\left(\frac{1}{4} \cdot 3 a^{2} \cot \frac{\pi}{3}\right)=\frac{1}{2} n a^{2} \cot \frac{\pi}{n}+\frac{\sqrt{3}}{2} n a^{2}=\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right)
\end{aligned}
$$

Therefore, the total surface area of regular n-gonal right antiprism having edge length a, is given as follows

$$
\begin{equation*}
A_{s}=\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right) \tag{9}
\end{equation*}
$$

2.8. Volume of regular polygonal antiprism

The regular n-gonal right antiprism, having $2 \mathrm{n}+2$ faces, is a convex polyhedron therefore it can be divided into $2 n+2$ number of elementary right pyramids out of which 2 n have regular triangular base and two have regular polygonal base. The sum of volumes of all $2 \mathrm{n}+2$ elementary right pyramids is equal to the volume of polygonal antiprism. Now, consider a regular polygonal antiprism with edge length a. The side of base of all elementary right pyramids is a and the vertical heights of regular triangular and polygonal right pyramids are H_{T} and H_{n} respectively (as shown in the Figure-3). The volume of regular polygonal antiprism is given as follows

Figure-3: A regular n-gonal right antiprism has $2 n$ identical elementary right pyramids each with regular triangular base (left) and 2 identical elementary right pyramids each with regular n-gonal base (right).
$V=2 n($ Volume of regular triangular pyramid $)+2($ Volume of regular polygonal pyramid)
$=2 n\left(\frac{1}{3}\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)_{n=3}\left(H_{T}\right)\right)+2\left(\frac{1}{3}\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right)\left(H_{n}\right)\right) \quad$ (where, $n=$ no. of sides in polygon)
$=2 n\left(\frac{1}{3}\left(\frac{1}{4} \cdot 3 a^{2} \cot \frac{\pi}{3}\right) \cdot \frac{a}{4 \sqrt{3}} \cot \frac{\pi}{2 n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)+2\left(\frac{1}{3}\left(\frac{1}{4} n a^{2} \cot \frac{\pi}{n}\right) \cdot \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)$ (setting values)
$=\frac{n a^{3}}{24} \cot \frac{\pi}{2 n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}+\frac{n a^{3}}{24} \cot \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$
$=\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$

Therefore, the volume of regular n-gonal right antiprism having edge length a, is given as follows

$$
\begin{equation*}
V=\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \tag{10}
\end{equation*}
$$

2.9. Solid angle subtended by equilateral triangular face at the centre

Now, substituting the value of $x=R_{o} / a$ from $\mathrm{Eq}(5)$ into $\mathrm{Eq}(4)$ above, the solid angle ω_{T} subtended by each regular triangular face at the centre of antiprism is obtained as follows

$$
\begin{aligned}
\omega_{T} & =2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3 x^{2}-1}{4 x^{2}-1}}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3\left(\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2}-1}{4\left(\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2}-1}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{12+3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-16}{16+4 \operatorname{cosec}^{2} \frac{\pi}{2 n}-16}}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}{4 \operatorname{cosec}^{2} \frac{\pi}{2 n}}}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)
\end{aligned}
$$

Therefore, the solid angle subtended by each regular triangular face at the centre of antiprism is given as

$$
\begin{equation*}
\omega_{T}=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right) \tag{11}
\end{equation*}
$$

2.10. Solid angle subtended by regular polygonal face at the centre

Now, substituting the value of $x=R_{o} / a$ from $\mathrm{Eq}(5)$ into $\mathrm{Eq}(2)$ above, the solid angle ω_{n} subtended by each regular polygonal face at the centre of antiprism is obtained as follows

$$
\begin{aligned}
\omega_{n} & =2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4 x^{2} \sin ^{2} \frac{\pi}{n}-1}{4 x^{2}-1}}\right)=2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{4\left(\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2} \sin ^{2} \frac{\pi}{n}-1}{4\left(\frac{1}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right)^{2}-1}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\sqrt{\frac{\left(16+4 \operatorname{cosec}^{2} \frac{\pi}{2 n}\right) \sin ^{2} \frac{\pi}{n}-16}{16+4 \operatorname{cosec}^{2} \frac{\pi}{2 n}-16}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(\sqrt{\left(4 \sin ^{2} \frac{\pi}{2 n}+1\right) 4 \sin ^{2} \frac{\pi}{2 n} \operatorname{cosec}^{2} \frac{\pi}{2 n}-4 \sin ^{2} \frac{\pi}{2 n}}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(2 \sin \frac{\pi}{2 n} \sqrt{\left(4 \sin ^{2} \frac{\pi}{2 n}+1\right)\left(1-\sin ^{2} \frac{\pi}{2 n}\right)-1}\right) \\
& =2 \pi-2 n \sin ^{-1}\left(2 \sin \frac{\pi}{2 n} \sqrt{3 \sin ^{2} \frac{\pi}{2 n}-4 \sin ^{4} \frac{\pi}{2 n}}\right)=2 \pi-2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)
\end{aligned}
$$

Therefore, the solid angle subtended by each regular polygonal face at the centre of antiprism is given as

$$
\begin{equation*}
\omega_{n}=2 \pi-2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right) \tag{12}
\end{equation*}
$$

2.11. Solid angle subtended by the antiprism at one of its 2 n identical vertices

The vertices A_{2} and A_{n} are joined to the centre O_{1} of regular polygonal face $A_{1} A_{2} A_{3} \ldots . A_{n-1} A_{n}$ to obtain isosceles $\Delta O_{1} A_{n} A_{2}$ having vertex $\angle A_{n} O_{1} A_{2}=\frac{4 \pi}{n}$. Now, in right $\Delta O_{1} Q A_{n}$ (as shown in the Figure-4(a))

$$
\begin{align*}
\sin \angle A_{n} O_{1} Q & =\frac{A_{n} Q}{O_{1} A_{n}} \Rightarrow \sin \frac{2 \pi}{n}=\frac{A_{n} Q}{\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}} \Rightarrow A_{n} Q=\frac{a}{2} \operatorname{cosec} \frac{\pi}{n} \sin \frac{2 \pi}{n} \\
\boldsymbol{A}_{\boldsymbol{n}} \boldsymbol{Q} & =\frac{a}{2} \operatorname{cosec} \frac{\pi}{n} 2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}=\boldsymbol{a} \cos \frac{\pi}{n} \tag{13}
\end{align*}
$$

Figure-4: (a) A regular n-gonal right antiprism (b) perpendiculars OD \& OE are drawn from the center O to the adjacent equilateral triangular faces $A_{1} B_{1} B_{2}$ and $A_{1} A_{2} B_{2}$ having a common edge $A_{1} B_{2}$ (c) cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ is obtained by joining four vertices of the antiprism.

The perpendiculars OD and OE are dropped from the centre O of the antiprism to the adjacent equilateral triangular faces $A_{1} B_{1} B_{2}$ and $A_{1} A_{2} B_{2}$, having a common edge $A_{1} B_{2}$, to their circum-centers/in-centers D and E respectively (as shown in the Figure-4(b)).

Now, in right $\triangle O D B_{1}$ (see above Fig-4(b)),

$$
\tan \theta_{1}=\frac{B_{1} D}{O D}=\frac{\frac{a}{\sqrt{3}}}{H_{T}}=\frac{\frac{a}{\sqrt{3}}}{\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}}=\frac{4}{\sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}}
$$

Similarly, in right $\triangle O D M$ (see above Fig-4(b)),

$$
\tan \theta_{2}=\frac{D M}{O D}=\frac{\frac{a}{2 \sqrt{3}}}{H_{T}}=\frac{\frac{a}{2 \sqrt{3}}}{\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}}=\frac{2}{\sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}}
$$

In right $\triangle O N B_{1}$ (see above Fig-4(b)),
$\sin \angle B_{1} \mathrm{ON}=\frac{B_{1} N}{O B_{1}} \Rightarrow B_{1} N=O B_{1} \sin \angle B_{1} \mathrm{ON}=R_{o} \sin \left(\theta_{1}+\theta_{2}\right)$

A regular n-gonal right antiprism has 2 n identical vertices say $A_{1}, A_{2}, A_{3}, \ldots, A_{n-1}, A_{n}$ \& $B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n-1}, B_{n}$ all lying on a sphere (i.e. circumscribed sphere with radius R_{o}). A cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ (see Figure-4(c) above) is obtained by joining the vertices $B_{1}, B_{2}, A_{2}, \& A_{n}$ (Figure-4(a)). The foot P of perpendicular $A_{1} P$ drawn from the vertex A_{1} to the quadrilateral $B_{1} B_{2} A_{2} A_{n}$ will be at an equal distance r (i.e. circum-radius) from the vertices $B_{1}, B_{2}, A_{2}, \& A_{n}$. The perpendiculars PQ, PR, PS, and PT are drawn from the foot of perpendicular (F.O.P.) P to all the sides $A_{2} A_{n}, A_{n} B_{1}, B_{1} B_{2}$ and $B_{2} A_{2}$ respectively (as shown in the above Figure-4(c)).

From A-A similarity, right triangles $\Delta B_{1} N B_{2}$ and $\triangle P S B_{2}$ are similar triangles (see the above Fig-4(c) or Fig-5). Therefore, using the ratio of corresponding sides of the similar triangles

$$
\frac{P S}{S B_{2}}=\frac{B_{1} N}{N B_{2}}
$$

$$
\frac{h_{2}}{a / 2}=\frac{\frac{a}{2} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}}{\frac{a}{2} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}
$$

$$
\begin{equation*}
h_{2}=\frac{a}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}} \tag{14}
\end{equation*}
$$

In right $\triangle P S B_{2}$ (see Fig-5), using Pythagoras theorem as follows

$$
\begin{aligned}
& \boldsymbol{B}_{\mathbf{1}} \boldsymbol{N}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right) \\
& =\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\left(\frac{\tan \theta_{1}}{\sqrt{1+\tan ^{2} \theta_{1}}} \frac{1}{\sqrt{1+\tan ^{2} \theta_{2}}}+\frac{1}{\sqrt{1+\tan ^{2} \theta_{1}}} \frac{\tan \theta_{2}}{\sqrt{1+\tan ^{2} \theta_{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\left(\frac{4}{\sqrt{3} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}} \frac{\sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}}{\sqrt{3} \operatorname{cosec} \frac{\pi}{2 n}}+\frac{\sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}}{\sqrt{3} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}} \frac{2}{\sqrt{3} \operatorname{cosec} \frac{\pi}{2 n}}\right) \\
& =\frac{a}{4}\left(\frac{4}{3} \sin \frac{\pi}{2 n} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}+\frac{2}{3} \sin \frac{\pi}{2 n} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right) \\
& =\frac{a}{2} \sin \frac{\pi}{2 n} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}=\frac{\boldsymbol{a}}{2} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}
\end{aligned}
$$

$$
\begin{aligned}
& r=P B_{2}=\sqrt{(P S)^{2}+\left(S B_{2}\right)^{2}}=\sqrt{\left(h_{2}\right)^{2}+(a / 2)^{2}}=\sqrt{\left(\frac{a}{2} \sqrt{\left.\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)^{2}+\frac{a^{2}}{4}}\right.} \\
& r=\frac{a}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}+1
\end{aligned}=\frac{a}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}+1+4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}=\frac{\boldsymbol{a}}{\sqrt{1+4 \sin ^{2} \frac{\boldsymbol{\pi}}{2 \boldsymbol{n}}}}
$$

In right $\Delta P Q A_{n}$ (see Fig-4(c) above), using Pythagoras theorem as follows

$$
\begin{align*}
\boldsymbol{h}_{\mathbf{1}} & =P Q=\sqrt{\left(P A_{n}\right)^{2}-\left(A_{n} Q\right)^{2}}=\sqrt{(r)^{2}-\left(\frac{A_{n} A_{2}}{2}\right)^{2}}=\sqrt{\left(\frac{a}{\left.\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)^{2}-\left(a \cos \frac{\pi}{n}\right)^{2}}\right.} \\
& =a \sqrt{\frac{1}{1+4 \sin ^{2} \frac{\pi}{2 n}}-\cos ^{2} \frac{\pi}{n}}=a \sqrt{\frac{1-\cos ^{2} \frac{\pi}{n}\left(1+4 \sin ^{2} \frac{\pi}{2 n}\right)}{1+4 \sin ^{2} \frac{\pi}{2 n}}}=a \sqrt{\frac{1-\left(1-2 \sin ^{2} \frac{\pi}{2 n}\right)^{2}\left(1+4 \sin ^{2} \frac{\pi}{2 n}\right)}{1+4 \sin ^{2} \frac{\pi}{2 n}}} \\
& =a \sqrt{\frac{12 \sin ^{4} \frac{\pi}{2 n}-16 \sin ^{6} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}=2 \boldsymbol{a} \sin ^{2} \frac{\boldsymbol{\pi}}{2 n} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}} \tag{15}
\end{align*}
$$

A perpendicular $A_{1} P$ is dropped from the vertex A_{1} of antiprism to the circum-centre P of cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ (see Figure4(c) above) to obtain a right $\Delta A_{1} P B_{1}$ (as shown in the Figure-6).

In right $\Delta A_{1} P B_{1}$ (see Fig-6), using Pythagoras theorem as follows

$$
\boldsymbol{h}=A_{1} P=\sqrt{\left(A_{1} B_{1}\right)^{2}-\left(B_{1} P\right)^{2}}=\sqrt{a^{2}-r^{2}}
$$

$$
=\sqrt{a^{2}-\left(\frac{a}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)^{2}}=a \sqrt{1-\frac{1}{1+4 \sin ^{2} \frac{\pi}{2 n}}}
$$

Figure-6: Right $\Delta A_{1} P B_{1}$. The vertex A_{1} is at a normal height h above circum-centre P.

$$
=a \sqrt{\frac{4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}=\frac{2 a \sin \frac{\pi}{2 n}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}
$$

The solid angle subtended by a right triangle having legs p and b at any point lying on the axis passing through the acute angled vertex and perpendicular to the plane of triangle (as shown in the Figure-7 below), is given by standard formula of HCR's Theory of Polygon [3] as follows

$$
\begin{equation*}
\omega=\sin ^{-1}\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{b}{\sqrt{b^{2}+p^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+p^{2}}}\right)\right\} \tag{17}
\end{equation*}
$$

From the above Figure-4(c), the solid angle $\omega_{\triangle P Q A_{n}}$ subtended by right $\triangle P Q A_{n}$, at the vertex A_{1} of the antiprism is obtained by substituting the corresponding values, $b=A_{n} Q, p=h_{1}$ and $h=h$ from the above $\mathrm{Eq}(13), \mathrm{Eq}(15)$ and $\mathrm{Eq}(16)$ respectively in the above standard formula ($\mathrm{Eq}(17)$), is given as follows

$$
\omega_{\triangle P Q A_{n}}=\sin ^{-1}\left(\frac{A_{n} Q}{\sqrt{A_{n} Q^{2}+h_{1}^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{A_{n} Q}{\sqrt{A_{n} Q^{2}+h_{1}^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+h_{1}^{2}}}\right)\right\}
$$

Figure-7: The point $P(0,0, h)$ lies at a normal distance h from acute angled vertex O of right $\triangle A B O$.

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\sqrt{\left(1-2 \sin ^{2} \frac{\pi}{2 n}\right)^{2}\left(1+4 \sin ^{2} \frac{\pi}{2 n}\right)+4 \sin ^{4} \frac{\pi}{2 n}\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)}}\right) \\
& -\sin ^{-1}\left\{\left(\frac{\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\sqrt{\left(1-2 \sin ^{2} \frac{\pi}{2 n}\right)^{2}\left(1+4 \sin ^{2} \frac{\pi}{2 n}\right)+4 \sin ^{4} \frac{\pi}{2 n}\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)}}\right)\left(\frac{\frac{2 a \sin \frac{\pi}{2 n}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}}{\frac{2 a \sin \frac{\pi}{2 n}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}} \sqrt{1+\sin ^{2} \frac{\pi}{2 n}\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)}}\right)\right\} \\
& =\sin ^{-1}\left(\frac{\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}+4 \sin ^{4} \frac{\pi}{2 n}+16 \sin ^{6} \frac{\pi}{2 n}-4 \sin ^{2} \frac{\pi}{2 n}-16 \sin ^{4} \frac{\pi}{2 n}+12 \sin ^{4} \frac{\pi}{2 n}-16 \sin ^{6} \frac{\pi}{2 n}}}\right) \\
& -\sin ^{-1}\left\{\left(\frac{\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}+4 \sin ^{4} \frac{\pi}{2 n}+16 \sin ^{6} \frac{\pi}{2 n}-4 \sin ^{2} \frac{\pi}{2 n}-16 \sin ^{4} \frac{\pi}{2 n}+12 \sin ^{4} \frac{\pi}{2 n}-16 \sin ^{6} \frac{\pi}{2 n}}}\right)\left(\frac{1}{\sqrt{1-\sin ^{2} \frac{\pi}{2 n}+4 \sin ^{2} \frac{\pi}{2 n}-4 \sin ^{4} \frac{\pi}{2 n}}}\right)\right\} \\
& =\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)-\sin ^{-1}\left\{\left(\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)\left(\frac{1}{\sqrt{\left(1-\sin ^{2} \frac{\pi}{2 n}\right)\left(1+4 \sin ^{2} \frac{\pi}{2 n}\right)}}\right)\right\} \\
& =\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\sqrt{\cos ^{2} \frac{\pi}{2 n}}}\right)=\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\omega_{\triangle P Q A_{n}}=\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right) \tag{18}
\end{equation*}
$$

Similarly, from the above Figure-4(c), the solid angle $\omega_{\triangle P R A_{n}}$ subtended by right $\triangle P R A_{n}$, at the vertex A_{1} of the antiprism is obtained by substituting the corresponding values, $b=a / 2, p=h_{2}$ and $h=h$ from the above $\mathrm{Eq}(14)$ and $\mathrm{Eq}(16)$ in the above standard formula $(\mathrm{Eq}(17))$, is given as follows

$$
\begin{align*}
& \omega_{\triangle P R A_{n}}=\sin ^{-1}\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+{h_{2}}^{2}}}\right)-\sin ^{-1}\left\{\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+{h_{2}}^{2}}}\right)\left(\frac{h}{\sqrt{h^{2}+{h_{2}}^{2}}}\right)\right\} \\
& \left.\omega_{\triangle P R A_{n}}=\sin ^{-1}\left(\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)^{2}}}\right)-\sin ^{-1}\left\{\frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)^{2}}}\right)\left(\frac{2 a \sin \frac{\pi}{2 n}}{\left.\sqrt{\left(\frac{2 a \sin \frac{\pi}{2 n}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)^{2}+\left(\frac{a}{\left.\frac{3}{2} \sqrt{\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)^{2}}\right.}\right)}\right)\right\} \\
& =\sin ^{-1}\left(\frac{\frac{a}{2}}{\frac{a}{2} \sqrt{1+\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}}\right)-\sin ^{-1}\left\{\left(\frac{\frac{a}{2}}{\frac{a}{2} \sqrt{1+\frac{3-4 \sin ^{2} \frac{\pi}{2 n}}{1+4 \sin ^{2} \frac{\pi}{2 n}}}}\right)\left(\frac{\frac{2 a \sin \frac{\pi}{2 n}}{\sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}}{\frac{a}{2 \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}} \sqrt{16 \sin ^{2} \frac{\pi}{2 n}+3-4 \sin ^{2} \frac{\pi}{2 n}}}\right)\right\} \\
& =\sin ^{-1}\left(\frac{1}{\sqrt{\frac{4}{1+4 \sin ^{2} \frac{\pi}{2 n}}}}\right)-\sin ^{-1}\left\{\left(\frac{1}{\sqrt{\frac{4}{1+4 \sin ^{2} \frac{\pi}{2 n}}}}\right)\left(\frac{4 \sin \frac{\pi}{2 n}}{\sqrt{3} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)\right\} \\
& =\sin ^{-1}\left(\frac{1}{2} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)-\sin ^{-1}\left\{\left(\frac{1}{2} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)\left(\frac{4 \sin \frac{\pi}{2 n}}{\sqrt{3} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}\right)\right\} \\
& \omega_{\triangle P R A_{n}}=\sin ^{-1}\left(\frac{1}{2} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)-\sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right) \tag{19}
\end{align*}
$$

According to HCR's Theory of Polygon, the solid angle $\omega_{B_{1} B_{2} A_{2} A_{n}}$ subtended at the vertex A_{1} of antiprism by the cyclic quadrilateral (trapezium) $B_{1} B_{2} A_{2} A_{n}$ will be equal to the algebraic sum of the solid angles subtended by the congruent right triangles $\triangle P Q A_{n} \& \triangle P Q A_{2}$ and the congruent right triangles $\triangle P R A_{n}, \triangle P R B_{1}, \triangle P S B_{1}, \triangle P S B_{2}$, $\triangle P T B_{2} \& \triangle P T A_{2}$ (as shown in the above Figure-4(c)). Therefore the solid angle subtended by the cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ at the vertex A_{1} of polygonal antiprism is obtained as follows

$$
\begin{aligned}
& \omega_{B_{1} B_{2} A_{2} A_{n}}=\omega_{\triangle P Q A_{n}}+\omega_{\triangle P Q A_{2}}+\omega_{\triangle P R A_{n}}+\omega_{\triangle P R B_{1}}+\omega_{\triangle P S B_{1}}+\omega_{\triangle P S B_{2}}+\omega_{\triangle P T B_{2}}+\omega_{\triangle P T A_{2}} \\
& \omega_{B_{1} B_{2} A_{2} A_{n}}=2\left(\omega_{\triangle P Q A_{n}}\right)+6\left(\omega_{\triangle P R A_{n}}\right) \quad(\because \text { triangles are congruent })
\end{aligned}
$$

Substituting the corresponding values from the above $\mathrm{Eq}(18)$ and $\mathrm{Eq}(19)$ as follows

$$
\begin{aligned}
& \omega_{B_{1} B_{2} A_{2} A_{n}}=2\left(\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)\right)+6\left(\sin ^{-1}\left(\frac{1}{2} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}\right)-\sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin ^{2 n} \frac{\pi}{2 n}\right)\right) \\
& \omega_{B_{1} B_{2} A_{2} A_{n}}=2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin ^{\frac{\pi}{2 n}}\right)\right) \\
& \omega_{B_{1} B_{2} A_{2} A_{n}}=2 \cos ^{-1}\left(\frac{2 \sin ^{3} \frac{\pi}{2 n}\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)+\cos ^{2} \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\cos \frac{\pi}{2 n}}\right)+6 \cos ^{-1}\left(\frac{3-4 \sin ^{2} \frac{\pi}{2 n}+2 \sin \frac{\pi}{2 n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{2 \sqrt{3}}\right)
\end{aligned}
$$

According to HCR's Theory of Polygon, the cone of vision of an object at a given point (i.e. eye of observer) in 3D space is an imaginary cone obtained by joining all the points of that object to the given point and the solid angle subtended by the object at that point is equal to the solid angle subtended by its cone of vision at the apex (i.e. eye of observer) [3]. It is worth noticing that cones of vision of regular polygonal right antiprism and the cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ are same therefore the solid angles subtended by the regular polygonal right antiprism and the cyclic quadrilateral $B_{1} B_{2} A_{2} A_{n}$ at the vertex A_{1} will be equal (as shown in the above Figure-4).

Therefore, the solid angle subtended by regular polygonal right antiprism at its vertex is given as

$$
\begin{equation*}
\omega_{\mathrm{V}}=2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right) \tag{20}
\end{equation*}
$$

Or

$$
\omega_{V}=2 \cos ^{-1}\left(\frac{2 \sin ^{3} \frac{\pi}{2 n}\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)+\cos ^{2} \frac{\pi}{n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{\cos \frac{\pi}{2 n}}\right)+6 \cos ^{-1}\left(\frac{3-4 \sin ^{2} \frac{\pi}{2 n}+2 \sin \frac{\pi}{2 n} \sqrt{1+4 \sin ^{2} \frac{\pi}{2 n}}}{2 \sqrt{3}}\right)
$$

It is interesting to note that the above value of solid angle ω_{V} is independent of the edge length a of regular polygonal right antiprism but depends only on the number of sides n of regular polygonal base.

2.12. Dihedral angle between any two adjacent equilateral triangular faces sharing a common edge

Let's consider any two adjacent equilateral triangular faces $A_{1} B_{1} B_{2}$ and $A_{1} A_{2} B_{2}$ having a common edge $A_{1} B_{2}$ (as shown in the top view of Figure-8 below). Drop the perpendiculars OD and OE from the centre O of the antiprism to the triangular faces $A_{1} B_{1} B_{2}$ and $A_{1} A_{2} B_{2}$, respectively which meet the faces at their in-centres D and E , respectively.

In right $\triangle O D M$ (see the front view in the Figure- 8 below),

$$
\begin{aligned}
\tan \angle D M O & =\frac{O D}{D M} \\
\Rightarrow \tan \frac{\theta_{T T E}}{2} & =\frac{H_{T}}{D M} \\
\tan \frac{\theta_{T T E}}{2} & =\frac{\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}}{\frac{a}{2 \sqrt{3}}}=\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4} \quad\left(\because \angle D M O=\frac{\angle D M E}{2}=\frac{\theta_{T}}{2} \quad\left(\because D M=\frac{a}{2 \sqrt{3}}\right)\right. \\
\theta_{T T E} & =2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)
\end{aligned}
$$

Therefore the dihedral angle $\theta_{T T E}$ between any two adjacent regular triangular faces sharing a common edge in a regular pentagonal antiprism is given as

$$
\begin{equation*}
\theta_{T T E}=2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right) \tag{21}
\end{equation*}
$$

2.13. Dihedral angle between regular triangular and

 polygonal faces sharing a common edgeLet's consider any two adjacent regular triangular and polygonal faces $A_{1} A_{2} B_{2}$ and $A_{1} A_{2} A_{3} \ldots . A_{n}$ having a common edge $A_{1} A_{2}$ (as shown in the top view in the Figure-9 below). Drop the perpendiculars OE and $\mathrm{O} O_{1}$ from the centre O of the antiprism to the triangular face and polygonal face respectively which meet the faces at their in-centres E and O_{1}, respectively. The inscribed radius of equilateral triangular face $A_{1} A_{2} B_{2}$ is $\frac{a}{2 \sqrt{3}}$.

In right $\triangle O E N$ (see the front view in the Figure-9),

$$
\begin{aligned}
\tan \angle E N O & =\frac{E O}{E N} \Rightarrow \tan \theta_{1}=\frac{H_{T}}{\frac{a}{2 \sqrt{3}}} \\
\tan \theta_{1} & =\frac{\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}}{\frac{a}{2 \sqrt{3}}} \\
\theta_{1} & =\tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)
\end{aligned}
$$

Now, the inscribed radius r of regular polygonal face $A_{1} A_{2} A_{3} \ldots . A_{n}$ with side a is given by generalized formula as follows

$$
r=\frac{a}{2} \cot \frac{\pi}{n}
$$

In right $\Delta O O_{1} N$ (see the front view in the Figure-9)

$$
\begin{aligned}
& \tan \angle O_{1} N O=\frac{O O_{1}}{N O_{1}} \Rightarrow \tan \theta_{2}=\frac{H_{n}}{r} \\
& \tan \theta_{2}=\frac{\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}}{\frac{a}{2} \cot \frac{\pi}{n}}=\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \\
& \theta_{2}=\tan ^{-1}\left(\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)
\end{aligned}
$$

Figure-8: (a) Two adjacent regular triangular faces having a common edge $A_{1} B_{2}$ (b) The perpendiculars drawn from the center O to the triangular faces fall at their in-centers D \& E, and their in-circles touch each other at the mid-point M of common edge $A_{1} B_{2}$.

Figure-9: (a) Two adjacent regular triangular and polygonal faces having a common edge $A_{1} A_{2}$ (b) The perpendiculars drawn from the center O to the faces fall at their in-centers $\mathbf{E} \& O_{1}$, and their in-circles touch each other at the mid-point N of common edge $\boldsymbol{A}_{1} A_{2}$.

Now, the total dihedral angle $\theta_{T P E}$ between regular triangular and polygonal faces with a common edge is the sum of dihedral angles θ_{1} and θ_{2} as determined above (see the front view in the above Figure-9) as follows

$$
\begin{align*}
& \theta_{T P E}=\theta_{1}+\theta_{2}=\tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)+\tan ^{-1}\left(\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right) \\
& \theta_{T P E}=\cos ^{-1}\left(\frac{1}{\sqrt{1+\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)^{2}}} \frac{1}{\sqrt{1+\left(\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)^{2}}}-\frac{\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}}{\sqrt{1+\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)^{2}}} \frac{\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}}{1+\left(\frac{1}{2} \tan \frac{\pi}{n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right)^{2}}\right) \\
& =\cos ^{-1}\left(\frac{2}{\sqrt{4+3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}} \frac{2}{\sqrt{4+\tan ^{2} \frac{\pi}{n}\left(4-\sec ^{2} \frac{\pi}{2 n}\right)}}-\frac{\frac{\sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}}{\sin \frac{\pi}{2 n}}}{\sqrt{4+3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}} \frac{\left.\frac{\sin \frac{\pi}{n} \sqrt{4 \cos ^{2} \frac{\pi}{2 n}-1}}{\sqrt{4+\tan ^{2} \frac{\pi}{n}\left(4-\sec ^{2} \frac{\pi}{2 n}\right)}}\right)}{\sqrt{\cos \frac{\pi}{2 n} \cos \frac{\pi}{2 n}}}\right) \\
& =\cos ^{-1}\left(\frac{4}{\sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}} \sqrt{4+\frac{\sin ^{2} \frac{\pi}{n}}{\cos ^{2} \frac{\pi}{n}}\left(4-\frac{1}{\cos ^{2} \frac{\pi}{2 n}}\right)}}-\frac{\sin \frac{\pi}{n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}} \sqrt{4 \cos ^{2} \frac{\pi}{2 n}-1}}{\sin \frac{\pi}{2 n} \cos \frac{\pi}{n} \cos \frac{\pi}{2 n} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}} \sqrt{4+\frac{\sin ^{2} \frac{\pi}{n}}{\cos ^{2} \frac{\pi}{n}}\left(4-\frac{1}{\cos ^{2} \frac{\pi}{2 n}}\right)}}\right) \\
& =\cos ^{-1}\left(\frac{4}{\left.\sqrt{3} \operatorname{cosec} \frac{\pi}{2 n} \sqrt{\frac{4\left(\cos ^{2} \frac{\pi}{n}+\sin ^{2} \frac{\pi}{n}\right) \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}{\cos ^{2} \frac{\pi}{n} \cos ^{2} \frac{\pi}{2 n}}}-\frac{\sin \frac{\pi}{n} \sqrt{\left(3-4 \sin ^{2} \frac{\pi}{2 n}\right)\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)}}{\sin \frac{\pi}{2 n} \cos \frac{\pi}{n} \cos \frac{\pi}{2 n} \sqrt{3} \operatorname{cosec} \frac{\pi}{2 n} \sqrt{\frac{4\left(\cos ^{2} \frac{\pi}{n}+\sin ^{2} \frac{\pi}{n}\right) \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}{\cos ^{2} \frac{\pi}{n} \cos ^{2} \frac{\pi}{2 n}}}}\right)}\right. \\
& =\cos ^{-1}\left(\frac{4}{\sqrt{3} \operatorname{cosec} \frac{\pi}{2 n} \frac{\sqrt{4 \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}}{\cos \frac{\pi}{n} \cos \frac{\pi}{2 n}}}-\frac{\sin \frac{\pi}{n} \sqrt{\left(3-4+4 \cos ^{2} \frac{\pi}{2 n}\right)\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)}}{\sqrt{3} \cos \frac{\pi}{n} \cos \frac{\pi}{2 n} \frac{\sqrt{4 \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}}{\cos \frac{\pi}{n} \cos \frac{\pi}{2 n}}}\right) \\
& =\cos ^{-1}\left(\frac{4 \sin \frac{\pi}{2 n} \cos \frac{\pi}{2 n} \cos \frac{\pi}{n}}{\sqrt{3} \sqrt{4 \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}}-\frac{\sin \frac{\pi}{n} \sqrt{\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)}}{\sqrt{3} \sqrt{4 \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}}\right) \\
& =\cos ^{-1}\left(\frac{2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}-\sin \frac{\pi}{n} \sqrt{\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)^{2}}}{\sqrt{3} \sqrt{4 \cos ^{2} \frac{\pi}{2 n}-\sin ^{2} \frac{\pi}{n}}}\right) \\
& =\cos ^{-1}\left(\frac{\sin \frac{2 \pi}{n}-\sin \frac{\pi}{n}\left|4 \cos ^{2} \frac{\pi}{2 n}-1\right|}{\sqrt{3} \sqrt{2\left(1+\cos \frac{\pi}{n}\right)-\left(1-\cos ^{2} \frac{\pi}{n}\right)}}\right) \\
& =\cos ^{-1}\left(\frac{\sin \frac{2 \pi}{n}-\sin \frac{\pi}{n}\left(4 \cos ^{2} \frac{\pi}{2 n}-1\right)}{\sqrt{3} \sqrt{2+2 \cos \frac{\pi}{n}-1+\cos ^{2} \frac{\pi}{n}}}\right)
\end{align*}
$$

$$
\begin{aligned}
& =\cos ^{-1}\left(\frac{\sin \frac{2 \pi}{n}-\sin \frac{\pi}{n}\left(2\left(1+\cos \frac{\pi}{n}\right)-1\right)}{\sqrt{3} \sqrt{\cos ^{2} \frac{\pi}{n}+2 \cos \frac{\pi}{n}+1}}\right) \\
& =\cos ^{-1}\left(\frac{\sin \frac{2 \pi}{n}-2 \sin \frac{\pi}{n}-2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}+\sin \frac{\pi}{n}}{\sqrt{3} \sqrt{\left(1+\cos \frac{\pi}{n}\right)^{2}}}\right)=\cos ^{-1}\left(\frac{\sin \frac{2 \pi}{n}-\sin \frac{2 \pi}{n}-\sin \frac{\pi}{n}}{\sqrt{3}\left|1+\cos \frac{\pi}{n}\right|}\right) \\
& =\cos ^{-1}\left(\frac{-\sin \frac{\pi}{n}}{\sqrt{3}\left(1+\cos \frac{\pi}{n}\right)}\right)=\cos ^{-1}\left(\frac{-2 \sin \frac{\pi}{2 n} \cos \frac{\pi}{2 n}}{\sqrt{3}\left(1+2 \cos ^{2} \frac{\pi}{2 n}-1\right)}\right)=\cos ^{-1}\left(\frac{-2 \sin \frac{\pi}{2 n} \cos \frac{\pi}{2 n}}{2 \sqrt{3} \cos ^{2} \frac{\pi}{2 n}}\right) \\
& =\cos ^{-1}\left(\frac{-\sin \frac{\pi}{2 n}}{\sqrt{3} \cos \frac{\pi}{2 n}}\right)=\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)
\end{aligned}
$$

Therefore the dihedral angle $\theta_{T P E}$ between any two adjacent regular triangular and polygonal faces having a common edge in a regular polygonal right antiprism is given as

$$
\begin{equation*}
\theta_{T P E}=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)=\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right) \tag{22}
\end{equation*}
$$

2.14. Dihedral angle between regular triangular and polygonal faces sharing a common vertex

It's worth noticing that the dihedral angle $\theta_{T P V}$ between any two adjacent regular triangular and polygonal faces having a common vertex in a regular polygonal antiprism is supplementary angle of $\theta_{T P E}$ which is given as

$$
\begin{equation*}
\theta_{T P V}=\pi-\theta_{T P E}=\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right) \tag{23}
\end{equation*}
$$

2.15. Dihedral angle between any two adjacent equilateral triangular faces sharing a common vertex

If α, β, and γ are the face angles i.e. the angles between the consecutive lateral edges meeting at the vertex O in a tetrahedron OABC then its internal dihedral angles say θ_{1}, θ_{2} and θ_{3} opposite to the face angles α, β and γ respectively (as shown in the Figure-10) are given by HCR's inverse cosine formula [4] as follows

$$
\begin{align*}
& \theta_{1}=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right) \tag{24}\\
& \theta_{2}=\cos ^{-1}\left(\frac{\cos \beta-\cos \alpha \cos \gamma}{\sin \alpha \sin \gamma}\right) \tag{25}\\
& \theta_{3}=\cos ^{-1}\left(\frac{\cos \gamma-\cos \alpha \cos \beta}{\sin \alpha \sin \beta}\right) \tag{26}
\end{align*}
$$

Now, consider any two adjacent equilateral triangular faces say $A_{1} B_{1} A_{n}$ and $A_{1} B_{2} A_{2}$ having a common vertex A_{1} and extend both the faces so that they intersect each other at the line segment $A_{1} B$ (as shown in the Figure-11 (a) below).

Figure-10: Dihedral angles $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \& \boldsymbol{\theta}_{\mathbf{3}}$ are opposite to face angles $\alpha, \beta \& \gamma$ respectively in tetrahedron OABC

Figure-11: (a) The triangular faces $A_{1} B_{1} A_{n} \& A_{1} B_{2} A_{2}$ are extended to make them intersect each other at the line segment $A_{1} B(b)$ tetrahedron $A_{1} A_{2} A_{n} B$ with face angles at the vertex A_{1} (c) tetrahedron $A_{1} A_{2} A_{n} B$ with dihedral angles between its triangular faces meeting at their common edges

Let $\theta_{T T V}$ be the dihedral angle between the equilateral triangular faces $A_{1} B_{1} A_{n}$ and $A_{1} B_{2} A_{2}$ about their common edge i.e. the line-segment of intersection $A_{1} B$ which is also the dihedral angle between the triangular faces $A_{1} B A_{n}$ and $A_{1} B A_{2}$ obtained by construction as shown in the above Figure-11(a).

It is also interesting to note that $\theta_{T P E}$ is the dihedral angle between any triangular face say $A_{1} B_{2} A_{2}$ and regular polygonal face $A_{1} A_{2} \ldots A_{n}$ which is also the dihedral angle between triangular faces $A_{1} A_{2} A_{n} \& A_{1} B A_{2}$, and dihedral angle between triangular faces $A_{1} A_{2} A_{n} \& A_{1} B A_{2}$ as shown in the above Figure-11(a). Now, assume that $\angle B A_{1} A_{2}=\angle B A_{1} A_{n}=\varphi(0<\varphi<\pi)$ using symmetry in the above Figure-11(a).

Now, consider the tetrahedron $A_{1} A_{2} A_{n} B$ with vertex A_{1} at which three equilateral triangular faces $A_{1} A_{2} A_{n}$, $A_{1} A_{n} B$ and $A_{1} B A_{2}$ having vertex angles $(n-2) \pi / n, \varphi$ and φ respectively (as shown in the above Figure-11(b)).

The angles $\theta_{T P E}, \theta_{T P E}$ and $\theta_{T T V}$ are the internal dihedral angles between triangular faces $A_{1} A_{2} A_{n} \& A_{1} A_{n} B$, $A_{1} A_{2} A_{n} \& A_{1} A_{2} B$, and $A_{1} A_{n} B \& A_{1} A_{2} B$ about the common edges $A_{1} A_{n}, A_{1} A_{2}$, and $A_{1} B$ respectively meeting at the vertex A_{1}. (as shown in the above Figure-11(c)).

Now, substituting $\alpha=\varphi, \beta=(n-2) \pi / n$ and $\gamma=\varphi$ in the above inverse cosine formula i.e. Eq(24), the internal dihedral angle $\theta_{1}=\theta_{T P E}$ opposite to the face angle $\alpha=\varphi$ in tetrahedron $A_{1} A_{2} A_{n} B$ (see the above Figure-11(c)) is obtained as follows

$$
\begin{aligned}
& \theta_{1}=\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right) \Rightarrow \theta_{T P E}=\cos ^{-1}\left(\frac{\cos \varphi-\cos \frac{(n-2) \pi}{n} \cos \varphi}{\sin \frac{(n-2) \pi}{n} \sin \varphi}\right) \\
& \frac{\cos \varphi-\cos \frac{(n-2) \pi}{n} \cos \varphi}{\sin \frac{(n-2) \pi}{n} \sin \varphi}=\cos \theta_{T P E} \\
& \frac{\cos \varphi}{\sin \varphi}\left(\frac{1-\cos \frac{(n-2) \pi}{n}}{\sin \frac{(n-2) \pi}{n}}\right)\left.=\cos \left(\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right) \quad \quad \text { (Setting value of } \theta_{T P E}\right) \\
& \cot \varphi\left(\frac{1+\cos \frac{2 \pi}{n}}{\sin \frac{2 \pi}{n}}\right)=-\cos \left(\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right)
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{rl}
\cot \varphi\left(\frac{1+2 \cos ^{2} \frac{\pi}{n}-1}{2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}}\right) & =-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n} \\
\frac{\cos \frac{\pi}{n}}{\sin \frac{\pi}{n}} & =-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n} \tan \varphi \\
-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n} \tan \varphi & =\cot \frac{\pi}{n} \\
\tan \varphi & =-\sqrt{3} \cot \frac{\pi}{n} \cot \frac{\pi}{2 n} \\
\cos \varphi & =-\frac{1}{\sqrt{1+\tan ^{2} \varphi}} \quad\left(\forall \frac{\pi}{2}\right.
\end{array} \varphi<\pi\right)\right] \sqrt{1+\left(-\sqrt{3} \cot ^{\left.\frac{\pi}{n} \cot \frac{\pi}{2 n}\right)^{2}}\right.}\right) \quad \begin{aligned}
& \cos \varphi \\
& \cos \\
& \sqrt{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}} \tag{27}
\end{aligned}
$$

Now, substituting $\alpha=(n-2) \pi / n, \beta=\varphi$ and $\gamma=\varphi$ in the above inverse cosine formula i.e. $\operatorname{Eq}(24)$, the internal dihedral angle $\theta_{1}=\theta_{T T V}$ opposite to the face angle $\alpha=(n-2) \pi / n$ in tetrahedron $A_{1} A_{2} A_{n} B$ (see the above Figure-11(c)) is obtained as follows

$$
\left.\begin{array}{rl}
\theta_{1} & =\cos ^{-1}\left(\frac{\cos \alpha-\cos \beta \cos \gamma}{\sin \beta \sin \gamma}\right) \\
\Rightarrow \theta_{T T V} & =\cos ^{-1}\left(\frac{\cos \frac{(n-2) \pi}{n}-\cos \varphi \cos \varphi}{\sin \varphi \sin \varphi}\right) \\
& =\cos ^{-1}\left(\frac{\cos \frac{(n-2) \pi}{n}-\cos ^{2} \varphi}{\sin ^{2} \varphi}\right) \\
& =\cos ^{-1}\left(\frac{-\cos \frac{2 \pi}{n}-\cos ^{2} \varphi}{1-\cos ^{2} \varphi}\right) \\
& =\cos ^{-1}\left(\frac{1}{-\cos \frac{2 \pi}{n}-\left(-\frac{1}{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}}\right.}\right)^{2} \\
1-\left(-\frac{1}{\sqrt{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}}}\right)^{2}
\end{array}\right)
$$

$$
\begin{aligned}
& =\cos ^{-1}\left(\frac{-\cos \frac{2 \pi}{n}-\frac{1}{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}}}{1-\frac{1}{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}}}\right)=\cos ^{-1}\left(\frac{-\cos \frac{2 \pi}{n}\left(1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}\right)-1}{1+3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}-1}\right) \\
& =\cos ^{-1}\left(\frac{-\cos \frac{2 \pi}{n}-3 \cos \frac{2 \pi}{n} \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}-1}{3 \cot ^{2} \frac{\pi}{n} \cot ^{2} \frac{\pi}{2 n}}\right)=\cos ^{-1}\left(-\frac{1}{3}\left(1+\cos \frac{2 \pi}{n}\right) \tan ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right) \\
& =\cos ^{-1}\left(-\frac{1}{3}\left(2 \cos ^{2} \frac{\pi}{n}\right) \tan ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)
\end{aligned}
$$

Therefore the dihedral angle $\theta_{T T V}$ between any two adjacent regular triangular faces having a common vertex in a regular polygonal right antiprism is given as

$$
\begin{align*}
& \theta_{T T V}=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right) \tag{28}\\
& \forall n \geq 3, \quad n \in N
\end{align*}
$$

It's worth noticing that the dihedral angles given by above $\mathrm{Eq}(21), \mathrm{Eq}(22), \mathrm{Eq}(23)$ and $\mathrm{Eq}(28)$ and the solid angles given by above $\mathrm{Eq}(11), \mathrm{Eq}(12)$ and $\mathrm{Eq}(20)$ are all independent of the edge length of the antiprism. All the angles derived above depend on the number of sides n only i.e. geometric shape of regular polygonal right antiprism.

2.16. Construction of regular polygonal right antiprism

A regular polygonal right antiprism can be constructed by following two methods depending on whether it is a solid or shell.
2.16.1. Solid regular polygonal right antiprism: The solid regular polygonal right antiprism can be made by joining all its $2 \mathrm{n}+2$ elementary right pyramids, out which 2 n are identical regular triangular right pyramids and 2 are identical regular polygonal right pyramids (as shown in the above Figure-1), such that all the adjacent elementary right pyramids share their mating edges, and apex points coinciding with the centre.
2.16.2. Regular polygonal right antiprism shell: The shell of a regular polygonal right antiprism can be made by folding about the common edges the net of all its $2 n+2$ faces out which $2 n$ are identical regular triangles and 2 are identical regular polygons all having equal side. The regular polygonal faces are connected by a band of 2 n equilateral triangular faces. The net of $2 \mathrm{n}+2$ faces has been shown in the Figure-12 below.

Figure-12: The net of $2 n$ regular triangular and 2 regular polygonal faces of a regular polygonal right antiprism.

2.17. Applications of generalised formula of regular polygonal right antiprism

A regular polygonal right antiprism forms an infinite class of vertex-transitive polyhedrons. The geometric shape of regular polygonal right antiprism depends on the number of sides in polygonal base n such that $n \geq 3, n \in N$. Now, substituting the different values of n i.e. $n=3,4,5, \ldots$ in the generalized formula as derived above, the infinite family of uniform n-gonal antiprism can be mathematically formulated \& analysed as below.

2.17.1. Regular triangular right antiprism or regular octahedron $(n=3)$

The important geometrical parameters of a regular triangular right antiprism or octahedron (as shown in the Figure-13) can be easily determined by substituting $n=3$ in the above generalized formula.

Number of triangular faces, $F_{3}=2 n+2=2 \cdot 3+2=8$
Number of edges, $E=4 n=4 \cdot 3=12$
Number of vertices, $V=2 n=2 \cdot 3=6$

1) Normal distance of each equilateral triangular face from the centre of a regular triangular right antiprism or octahedron with edge length a is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(7)$ or $\mathrm{Eq}(6)$ as follows

$$
H_{T}=\left.\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}\right|_{n=3}=\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{6}-12}=\frac{a}{\sqrt{6}}
$$

Or

Figure-13: Regular triangular right antiprism or octahedron ($\mathrm{n}=3$).

$$
H_{T}=\left.H_{n}\right|_{n=3}=\left.\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=3}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{6}}=\frac{a}{\sqrt{6}} \approx 0.40824829 a
$$

2) Perpendicular height (i.e. normal distance between opposite regular triangular faces) is obtained by substituting
$n=3$ in the above generalized formula i.e. $\mathrm{Eq}(8)$ as follows

$$
H=2 H_{n}=\left.2 \cdot \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=3}=\frac{a}{2} \sqrt{4-\sec ^{2} \frac{\pi}{6}}=a \sqrt{\frac{2}{3}} \approx 0.81649658 a
$$

3) Radius of circumscribed sphere i.e. the sphere on which all 6 identical vertices lie, is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(5)$ as follows

$$
R_{o}=\left.\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right|_{n=3}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{6}}=\frac{a}{\sqrt{2}} \approx 0.707106781 a
$$

4) Total surface area of regular triangular right antiprism or regular octahedron is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(9)$ as follows

$$
A_{s}=\left.\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right)\right|_{n=3}=\frac{1}{2} 3 a^{2}\left(\sqrt{3}+\cot \frac{\pi}{3}\right)=2 \sqrt{3} a^{2} \approx 3.464101615 a^{2}
$$

5) Volume of regular triangular right antiprism or regular octahedron is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(10)$ as follows

$$
V=\left.\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=3}=\frac{3 a^{3}}{24}\left(\cot \frac{\pi}{6}+\cot \frac{\pi}{3}\right) \sqrt{4-\sec ^{2} \frac{\pi}{6}}=\frac{\sqrt{2}}{3} a^{3} \approx 0.47140452 a^{3}
$$

6) Dihedral angle between any two adjacent regular triangular faces having a common edge is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(21)$ or $\mathrm{Eq}(22)$ as follows

$$
\begin{aligned}
\theta_{T T E} & =\left.2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)\right|_{n=3}=2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{6}-4}\right) \\
& =2 \tan ^{-1}(\sqrt{2}) \approx 109.4712206^{\circ}
\end{aligned}
$$

Or

$$
\theta_{T T E}=\pi-\left.\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=3}=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{6}\right)=\pi-\cos ^{-1}\left(\frac{1}{3}\right) \approx 109.4712206^{0}
$$

The above value of dihedral angle between any two triangular faces having a common edge in a regular octahedron is same as obtained by the author [6].
7) Dihedral angle between any two adjacent regular triangular faces having a common vertex is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(28)$ or $\mathrm{Eq}(23)$ as follows

$$
\begin{aligned}
\theta_{T T V} & =\left.\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)\right|_{n=3}=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{3} \tan ^{2} \frac{\pi}{6}-\cos \frac{2 \pi}{3}\right) \\
& =\cos ^{-1}\left(\frac{1}{3}\right) \approx 70.52877937^{\circ}
\end{aligned}
$$

Or

$$
\theta_{T T V}=\left.\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=3}=\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{6}\right)=\cos ^{-1}\left(\frac{1}{3}\right) \approx 70.52877937^{\circ}
$$

8) Solid angle subtended by equilateral triangular face at the centre of regular triangular right antiprism is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(11)$ or $\mathrm{Eq}(12)$ as follows

$$
\begin{aligned}
\omega_{T} & =2 \pi-\left.6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=3}=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{6}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{2} \approx 1.570796327 \mathrm{sr}
\end{aligned}
$$

Or

$$
\begin{aligned}
\omega_{T} & =2 \pi-\left.2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=3}=2 \pi-6 \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{6} \sqrt{3-4 \sin ^{2} \frac{\pi}{6}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{2} \approx 1.570796327 \mathrm{sr}
\end{aligned}
$$

9) Solid angle subtended by regular triangular right antiprism at each of its 6 identical vertices is obtained by substituting $n=3$ in the above generalized formula i.e. $\mathrm{Eq}(20)$ as follows

$$
\begin{aligned}
\omega_{V} & =\left.2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right)\right|_{n=3} \\
& =2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{3}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{3} \sqrt{3-2 \cos \frac{\pi}{3}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{3}}{\cos \frac{\pi}{6}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{6}\right)\right) \\
& =8\left(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)=2 \pi-8 \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 1.359347638 s r
\end{aligned}
$$

The above value of solid angle subtended by a regular triangular right antiprism or octahedron at each vertex is same as obtained by the author [7].

2.17.2. Square right antiprism $(n=4)$

The important geometrical parameters of a square right antiprism (as shown in the Figure-14) can be easily determined by substituting $n=4$ in the above generalized formula.

Number of triangular faces, $F_{t}=2 n=2 \cdot 4=8$
Number of square faces, $F_{4}=2$
Number of edges, $E=4 n=4 \cdot 4=16$
Number of vertices, $V=2 n=2 \cdot 4=8$

1) Normal distance of each equilateral triangular face from the centre of a square right antiprism with edge length a is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(7)$ as follows

$$
\begin{aligned}
H_{T} & =\left.\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}\right|_{n=4}=\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{8}-12} \\
& =\frac{a}{4} \sqrt{\frac{8+6 \sqrt{2}}{3}} \approx 0.586040409 a
\end{aligned}
$$

Figure-14: Square right antiprism ($\mathrm{n}=4$).
2) Normal distance of each square face from the centre of square right antiprism with edge length a is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(6)$ as follows

$$
H_{4}=\left.H_{n}\right|_{n=4}=\left.\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=4}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{8}}=\frac{a}{2 \sqrt{\sqrt{2}}}=\frac{a}{2^{5 / 4}} \approx 0.420448207 a
$$

3) Perpendicular height (i.e. normal distance between opposite square faces) is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(8)$ as follows

$$
H=2 H_{n}=\left.2 \cdot \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=4}=\frac{a}{2} \sqrt{4-\sec ^{2} \frac{\pi}{8}}=\frac{a}{2^{1 / 4}} \approx 0.840896415 a
$$

4) Radius of circumscribed sphere i.e. the sphere on which all 8 identical vertices of square right antiprism lie, is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(5)$ as follows

$$
R_{o}=\left.\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right|_{n=4}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{8}}=\frac{a}{4} \sqrt{8+2 \sqrt{2}} \approx 0.822664388 a
$$

5) Total surface area of square right antiprism is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(9)$ as follows

$$
A_{s}=\left.\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right)\right|_{n=4}=\frac{1}{2} 4 a^{2}\left(\sqrt{3}+\cot \frac{\pi}{4}\right)=2 a^{2}(\sqrt{3}+1) \approx 5.464101615 a^{2}
$$

6) Volume of square right antiprism is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(10)$ as follows

$$
\begin{aligned}
V & =\left.\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=4}=\frac{4 a^{3}}{24}\left(\cot \frac{\pi}{8}+\cot \frac{\pi}{4}\right) \sqrt{4-\sec ^{2} \frac{\pi}{8}} \\
& =\frac{a^{3}}{3}\left(2^{3 / 4}+2^{1 / 4}\right) \approx 0.956999981 a^{3}
\end{aligned}
$$

7) Dihedral angle between any two adjacent regular triangular faces having a common edge is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(21)$ as follows

$$
\begin{aligned}
\theta_{T T E} & =\left.2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)\right|_{n=4}=2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{8}-4}\right) \\
& =2 \tan ^{-1}\left(\frac{\sqrt{8+6 \sqrt{2}}}{2}\right) \approx 127.5516029^{\circ}
\end{aligned}
$$

8) Dihedral angle between any two adjacent regular triangular faces having a common vertex is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(28)$ as follows

$$
\begin{aligned}
\theta_{T T V} & =\left.\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)\right|_{n=4}=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{4} \tan ^{2} \frac{\pi}{8}-\cos \frac{2 \pi}{4}\right) \\
& =\cos ^{-1}\left(\frac{2 \sqrt{2}-3}{3}\right) \approx 93.27858947^{\circ}
\end{aligned}
$$

9) Dihedral angle $\theta_{T S E}$ between any two adjacent regular triangular and square faces having a common edge is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(22)$ as follows

$$
\begin{aligned}
\theta_{T S E} & =\left.\theta_{T P E}\right|_{n=4}=\left.\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=4}=\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{8}\right) \\
& =\cos ^{-1}\left(-\frac{1}{\sqrt{3}}(\sqrt{2}-1)\right)=\cos ^{-1}\left(\frac{\sqrt{3}-\sqrt{6}}{3}\right) \approx 103.8361605^{\circ}
\end{aligned}
$$

10) Dihedral angle $\theta_{T S V}$ between any two adjacent regular triangular and square faces having a common vertex is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(23)$ as follows

$$
\theta_{T S V}=\left.\theta_{T P V}\right|_{n=4}=\left.\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=4}=\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{8}\right)
$$

$$
=\cos ^{-1}\left(\frac{1}{\sqrt{3}}(\sqrt{2}-1)\right)=\cos ^{-1}\left(\frac{\sqrt{6}-\sqrt{3}}{3}\right) \approx 76.16383952^{0}
$$

11) Solid angle subtended by equilateral triangular face at the centre of square right antiprism is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(11)$ as follows

$$
\begin{aligned}
\omega_{T} & =2 \pi-\left.6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=4}=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{8}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\frac{\sqrt{\sqrt{2}+1}}{2}\right) \approx 0.944946255 s r
\end{aligned}
$$

12) Solid angle subtended by square face at the centre of square right antiprism is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(12)$ as follows

$$
\begin{aligned}
\omega_{4} & =\left.\omega_{n}\right|_{n=4}=2 \pi-\left.2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=4}=2 \pi-8 \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{8} \sqrt{3-4 \sin ^{2} \frac{\pi}{8}}\right) \\
& =2 \pi-8 \sin ^{-1}\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right) \approx 2.503400284 s r
\end{aligned}
$$

13) Solid angle subtended by square right antiprism at each of its 8 identical vertices is obtained by substituting $n=4$ in the above generalized formula i.e. $\mathrm{Eq}(20)$ as follows

$$
\begin{aligned}
& \omega_{V}=\left.2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right)\right|_{n=4} \\
& =2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{4}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{4} \sqrt{3-2 \cos \frac{\pi}{4}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{4}}{\cos \frac{\pi}{8}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{8}\right)\right) \\
& =2\left(3 \sin ^{-1}\left(\frac{\sqrt{3-\sqrt{2}}}{2}\right)+\sin ^{-1}\left(\sqrt{\frac{3-\sqrt{2}}{2}}\right)-\sin ^{-1}(\sqrt{2-\sqrt{2}})-3 \sin ^{-1}\left(\sqrt{\frac{2-\sqrt{2}}{3}}\right)\right) \approx 1.793771333 s r
\end{aligned}
$$

2.17.3. Regular pentagonal right antiprism $(n=5)$

The important geometrical parameters of a regular pentagonal right antiprism (as shown in the Figure-15 below) can be easily determined by substituting $n=5$ in the above generalized formula.

Number of triangular faces, $F_{t}=2 n=2 \cdot 5=10$
Number of regular pentagonal faces, $F_{5}=2$
Number of edges, $E=4 n=4 \cdot 5=20$
Number of vertices, $V=2 n=2 \cdot 5=10$

1) Normal distance of each equilateral triangular face from the centre of a regular pentagonal right antiprism with edge length a is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(7)$ as follows

$$
\begin{aligned}
H_{T} & =\left.\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}\right|_{n=5}=\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{10}-12} \\
& =\frac{(3+\sqrt{5}) a}{4 \sqrt{3}} \approx 0.755761314 a
\end{aligned}
$$

2) Normal distance of each regular pentagonal face from the centre of regular pentagonal right antiprism with edge length a is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(6)$ as follows

$$
\begin{aligned}
H_{5} & =\left.H_{n}\right|_{n=5}=\left.\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=5}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{10}} \\
& =\frac{a}{2} \sqrt{\frac{5+\sqrt{5}}{10}} \approx 0.425325404 a
\end{aligned}
$$

Figure-15: Regular pentagonal right antiprism ($\mathrm{n}=5$).
3) Perpendicular height (i.e. normal distance between opposite regular pentagonal faces) is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(8)$ as follows

$$
H=2 H_{5}=\left.2 \cdot \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=5}=\frac{a}{2} \sqrt{4-\sec ^{2} \frac{\pi}{10}}=a \sqrt{\frac{5+\sqrt{5}}{10}} \approx 0.850650808 a
$$

4) Radius of circumscribed sphere i.e. the sphere on which all 10 identical vertices of regular pentagonal right antiprism lie, is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(5)$ as follows

$$
R_{o}=\left.\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}\right|_{n=5}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{10}}=\frac{a}{4} \sqrt{10+2 \sqrt{5}} \approx 0.951056516 a
$$

5) Total surface area of regular pentagonal right antiprism is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(9)$ as follows

$$
A_{s}=\left.\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right)\right|_{n=5}=\frac{1}{2} 5 a^{2}\left(\sqrt{3}+\cot \frac{\pi}{5}\right)=\frac{a^{2}}{2}(5 \sqrt{3}+\sqrt{25+10 \sqrt{5}}) \approx 7.77108182 a^{2}
$$

6) Volume of regular pentagonal right antiprism is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(10)$ as follows

$$
\begin{aligned}
V & =\left.\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}\right|_{n=5}=\frac{5 a^{3}}{24}\left(\cot \frac{\pi}{10}+\cot \frac{\pi}{5}\right) \sqrt{4-\sec ^{2} \frac{\pi}{10}} \\
& =\frac{a^{3}}{6}(5+2 \sqrt{5}) \approx 1.578689326 a^{3}
\end{aligned}
$$

7) Dihedral angle between any two adjacent regular triangular faces having a common edge is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(21)$ as follows

$$
\begin{aligned}
\theta_{T T E} & =\left.2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)\right|_{n=5}=2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{10}-4}\right) \\
& =2 \tan ^{-1}\left(\frac{3+\sqrt{5}}{2}\right) \approx 138.1896851^{\circ}
\end{aligned}
$$

8) Dihedral angle between any two adjacent regular triangular faces having a common vertex is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(28)$ as follows

$$
\begin{aligned}
\theta_{T T V} & =\left.\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)\right|_{n=5}=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{5} \tan ^{2} \frac{\pi}{10}-\cos \frac{2 \pi}{5}\right) \\
& =\cos ^{-1}\left(-\frac{1}{3}\right) \approx 109.4712206^{\circ}
\end{aligned}
$$

9) Dihedral angle $\theta_{T P E}$ between any two adjacent regular triangular and pentagonal faces having a common edge is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(22)$ as follows

$$
\begin{aligned}
\theta_{T P E} & =\left.\theta_{T P E}\right|_{n=5}=\left.\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=5}=\cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{10}\right) \\
& =\cos ^{-1}\left(-\sqrt{\frac{5-2 \sqrt{5}}{15}}\right)=\pi-\tan ^{-1}(3+\sqrt{5}) \approx 100.812317^{0}
\end{aligned}
$$

10) Dihedral angle $\theta_{T P V}$ between any two adjacent regular triangular and pentagonal faces having a common vertex is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(23)$ as follows

$$
\begin{aligned}
\theta_{T P V} & =\left.\theta_{T P V}\right|_{n=5}=\left.\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)\right|_{n=5}=\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{10}\right) \\
& =\cos ^{-1}\left(\sqrt{\frac{5-2 \sqrt{5}}{15}}\right)=\tan ^{-1}(3+\sqrt{5}) \approx 79.18768304^{\circ}
\end{aligned}
$$

11) Solid angle subtended by equilateral triangular face at the centre of regular pentagonal right antiprism is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(11)$ as follows

$$
\begin{aligned}
\omega_{T} & =2 \pi-\left.6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=5}=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{10}}\right)=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\left(\frac{\sqrt{5}-1}{4}\right)^{2}}\right) \\
& =2 \pi-6 \sin ^{-1}\left(\frac{\sqrt{5}+1}{4}\right)=2 \pi-6 \sin ^{-1}\left(\sin \frac{3 \pi}{10}\right)=\frac{\pi}{5} \approx 0.62831853 \mathrm{sr}
\end{aligned}
$$

12) Solid angle subtended by regular pentagonal face at the centre of regular pentagonal right antiprism is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(12)$ as follows

$$
\begin{aligned}
\omega_{5} & =\left.\omega_{n}\right|_{n=5}=2 \pi-\left.2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)\right|_{n=5}=2 \pi-10 \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{10} \sqrt{3-4 \sin ^{2} \frac{\pi}{10}}\right) \\
& =2 \pi-10 \sin ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)=2 \pi-10 \sin ^{-1}\left(\sin \frac{\pi}{10}\right)=\pi \approx 3.141592654 \mathrm{sr}
\end{aligned}
$$

13) Solid angle subtended by regular pentagonal right antiprism at each of its 10 identical vertices is obtained by substituting $n=5$ in the above generalized formula i.e. $\mathrm{Eq}(20)$ as follows
$\omega_{V}=\left.2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right)\right|_{n=5}$

$$
=2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{5}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{5} \sqrt{3-2 \cos \frac{\pi}{5}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{5}}{\cos \frac{\pi}{10}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{10}\right)\right) \approx 2.059558403 s r
$$

All the above values of geometric parameters of a regular pentagonal right antiprism are same as obtained by the author [5].

Thus the analytic formula can be derived for any right antiprism having polygonal base with desired no. of sides n such that $n \geq 3, n \in N$.

2.17.4. Infinite right antiprism $(n \rightarrow \infty)$

An infinite right antiprism is a right antiprism having two polygonal bases each with infinite number of sides i.e. $n \rightarrow \infty$ each of finite length a. In other words, an infinite right antiprism has a band of infinite number of equilateral triangular faces each with finite side connected by two regular polygonal bases each with infinite number of sides. Obviously, a regular polygon with infinite number of sides each of finite length looks becomes a circle. Thus an infinite right antiprism becomes a right cylinder having finite length and circular bases each with infinite radius. The important geometrical parameters of an infinite right antiprism can be easily determined by taking the limits of the above generalized formula as $n \rightarrow \infty$.

Number of triangular faces, $F_{t}=2 n \rightarrow \infty$
Number of regular polygonal faces with infinite no. of sides, $F_{\infty}=2$
Number of edges, $E=4 n \rightarrow \infty$
Number of vertices, $V=2 n \rightarrow \infty$

1) Normal distance of each equilateral triangular face from the centre of an infinite right antiprism with finite edge length a is obtained by taking limit of H_{T} given from the above $\mathrm{Eq}(7)$ as $n \rightarrow \infty$

$$
H_{T}=\lim _{n \rightarrow \infty} \frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12} \rightarrow \infty
$$

The above result shows that each triangular face is at an infinite distance from the centre of infinite right antiprism.
2) Normal distance of each regular polygonal face with infinite no. of sides from the centre of infinite right antiprism with finite edge length a is obtained by taking limit of H_{n} given from the above $\mathrm{Eq}(6)$ as $n \rightarrow \infty$

$$
H_{\infty}=\lim _{n \rightarrow \infty} H_{n}=\lim _{n \rightarrow \infty} \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}=\frac{a \sqrt{3}}{4}
$$

The above result shows that each polygonal face is at a finite distance from the centre of infinite right antiprism.
3) Perpendicular height (i.e. normal distance between opposite regular polygonal faces) is obtained by taking limit of H given from the above $\mathrm{Eq}(8)$ as $n \rightarrow \infty$

$$
H=2 H_{\infty}=2 \lim _{n \rightarrow \infty} \frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}=\frac{a \sqrt{3}}{2}
$$

4) Radius of circumscribed sphere i.e. the sphere on which all infinite identical vertices of infinite right antiprism lie, is obtained by taking limit of R_{o} given from the above $\mathrm{Eq}(5)$ as $n \rightarrow \infty$

$$
R_{o}=\lim _{n \rightarrow \infty} \frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}} \rightarrow \infty
$$

5) Total surface area of infinite right antiprism is obtained by taking limit of A_{s} given from the above $\operatorname{Eq}(9)$ as $n \rightarrow \infty$

$$
A_{s}=\lim _{n \rightarrow \infty} \frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right) \rightarrow \infty
$$

6) Volume of regular pentagonal right antiprism is obtained by taking limit of V given from the above $\mathrm{Eq}(10)$ as $n \rightarrow \infty$

$$
V=\lim _{n \rightarrow \infty} \frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}} \rightarrow \infty
$$

7) Dihedral angle between any two adjacent regular triangular faces having a common edge is obtained by taking limit of $\theta_{T T E}$ given from the above $\mathrm{Eq}(21)$ as $n \rightarrow \infty$

$$
\theta_{T T E}=\lim _{n \rightarrow \infty} 2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)=\pi
$$

The above result shows that the triangular faces with finite side and common edge become co-planar with each other in infinitely long band of triangular faces.
8) Dihedral angle between any two adjacent regular triangular faces having a common vertex is obtained by taking limit of $\theta_{T T V}$ given from the above $\mathrm{Eq}(28)$ as $n \rightarrow \infty$

$$
\theta_{T T V}=\lim _{n \rightarrow \infty} \cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)=\pi
$$

The above result shows that the triangular faces with finite side and common vertex become co-planar with each other in infinitely long band of triangular faces.
9) Dihedral angle $\theta_{T P E}$ between any two adjacent regular triangular and polygonal faces having a common edge is obtained by taking limit of $\theta_{T P E}$ given from the above $\mathrm{Eq}(22)$ as $n \rightarrow \infty$

$$
\theta_{T P E}=\lim _{n \rightarrow \infty} \cos ^{-1}\left(-\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)=\frac{\pi}{2}
$$

The above result shows that each triangular face having common edge with regular polygonal face becomes perpendicular to the plane of polygonal base with infinite no. of sides each of finite length.
9) Dihedral angle $\theta_{T P V}$ between any two adjacent regular triangular and polygonal faces having a common vertex is obtained by taking limit of $\theta_{T P V}$ given from the above $\mathrm{Eq}(23)$ as $n \rightarrow \infty$

$$
\theta_{T P V}=\lim _{n \rightarrow \infty} \cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)=\frac{\pi}{2}
$$

The above result shows that each triangular face having common vertex with regular polygonal face becomes perpendicular to the plane of polygonal base with infinite no. of sides each of finite length.
11) Solid angle subtended by each equilateral triangular face at the centre of infinite right antiprism is obtained by taking limit of ω_{T} given from the above $\mathrm{Eq}(11)$ as $n \rightarrow \infty$

$$
\omega_{T}=\lim _{n \rightarrow \infty} 2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)=0
$$

The above result shows that each triangular face of finite side subtends a solid angle of 0 sr at the centre located at an infinite distance from each triangular face.
12) Solid angle subtended by each regular polygonal face with infinite no. of sides at the centre of infinite right antiprism is obtained by taking limit of ω_{n} given from the above $\mathrm{Eq}(12)$ as $n \rightarrow \infty$

$$
\omega_{\infty}=\lim _{n \rightarrow \infty} \omega_{n}=\lim _{n \rightarrow \infty} 2 \pi-2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)=2 \pi
$$

The above result shows that each polygonal face with infinite no. of sides subtends a solid angle of 2π sr at the centre which implies that each polygonal face covers the centre like a hemispherical cap.
13) Solid angle subtended by infinite right antiprism at each of its infinite vertices is obtained by taking limit of ω_{V} given from the above $\mathrm{Eq}(20)$ as $n \rightarrow \infty$

$$
\omega_{V}=\lim _{n \rightarrow \infty} 2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right)=\pi
$$

The above result shows that the infinite right antiprism subtends a solid angle of $\pi \mathrm{sr}$ at each of its vertices which implies that the band of triangular faces becomes an infinitely long rectangular plane with finite width (as shown in the Figure-16)

Figure-16: The band of triangular faces of infinite right antiprism becomes a rectangular plane of infinite length \& finite width, and subtends a solid angle of $\pi s r$ at each vertex.

2.18. Variations of dimensionless parameters of regular polygonal right antiprism

The dimensionless parameters, the dihedral angles; $\theta_{T T E}, \theta_{T T V}, \theta_{T P E} \& \theta_{T P V}$ and the solid angles; $\omega_{T}, \omega_{n} \& \omega_{V}$ (as derived above) only depend on the number of sides in regular polygonal base n which is a natural number such that $n \geq 3, n \in N$. The graphs of variation of dihedral and solid angles with respect to the number of sides n can be plotted by assuming n to be a continuous variable such that $n \geq 3$ as shown by the solid curves in the Figure-17 and Figure-18 below. These plots can be used to determine the values of dihedral and solid angles of a regular n-gonal right antiprism at the desired positive integer value of n.

Figure-17: The variations of dihedral angles $\theta_{T T E}, \theta_{T T V}, \theta_{T P E}$ and $\theta_{T P V}$ w.r.t. n

Figure-18: The variations of solid angles ω_{T}, ω_{n} and ω_{V} w.r.t. n

Summary: All the important geometric parameters of a regular n-gonal right antiprism having edge length a can be determined as tabulated below.

Geometric parameter	Formula
Normal distance of equilateral triangular face from the centre	$H_{T}=\frac{a}{12} \sqrt{9 \operatorname{cosec}^{2} \frac{\pi}{2 n}-12}=\frac{a}{4 \sqrt{3}} \cot \frac{\pi}{2 n} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$
Normal distance of regular polygonal face from the centre	$H_{n}=\frac{a}{4} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$
Perpendicular height (i.e. normal distance between opposite regular polygonal faces)	$H=2 H_{n}=\frac{a}{2} \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$
Radius of circumscribed sphere	$R_{o}=\frac{a}{4} \sqrt{4+\operatorname{cosec}^{2} \frac{\pi}{2 n}}$
Total surface area	$A_{s}=\frac{1}{2} n a^{2}\left(\sqrt{3}+\cot \frac{\pi}{n}\right)$
Volume	$V=\frac{n a^{3}}{24}\left(\cot \frac{\pi}{2 n}+\cot \frac{\pi}{n}\right) \sqrt{4-\sec ^{2} \frac{\pi}{2 n}}$
Dihedral angle between any two adjacent regular triangular faces having a common edge	$\theta_{T T E}=2 \tan ^{-1}\left(\frac{1}{2} \sqrt{3 \operatorname{cosec}^{2} \frac{\pi}{2 n}-4}\right)$
Dihedral angle between any two adjacent regular triangular faces having a common vertex	$\theta_{T T V}=\cos ^{-1}\left(-\frac{2}{3} \sin ^{2} \frac{\pi}{n} \tan ^{2} \frac{\pi}{2 n}-\cos \frac{2 \pi}{n}\right)$
Dihedral angle between adjacent regular triangular and polygonal faces having a common edge	$\theta_{T P E}=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)=\cos ^{-1}\left(\frac{-1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)$
Dihedral angle between adjacent regular triangular and polygonal faces having a common vertex	$\theta_{T P V}=\pi-\theta_{T P E}=\cos ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{\pi}{2 n}\right)$
Solid angle subtended by equilateral triangular face at the centre	$\omega_{T}=2 \pi-6 \sin ^{-1}\left(\sqrt{\frac{3}{4}-\sin ^{2} \frac{\pi}{2 n}}\right)$
Solid angle subtended by regular polygonal face at the centre	$\omega_{n}=2 \pi-2 n \sin ^{-1}\left(2 \sin ^{2} \frac{\pi}{2 n} \sqrt{3-4 \sin ^{2} \frac{\pi}{2 n}}\right)$
Solid angle subtended by polygonal antiprism at each of its $2 n$ identical vertices lying on a sphere	$\begin{array}{r} \omega_{\mathrm{V}}=2\left(3 \sin ^{-1}\left(\frac{1}{2} \sqrt{3-2 \cos \frac{\pi}{n}}\right)+\sin ^{-1}\left(\cos \frac{\pi}{n} \sqrt{3-2 \cos \frac{\pi}{n}}\right)\right. \\ \left.-\sin ^{-1}\left(\frac{\cos \frac{\pi}{n}}{\cos \frac{\pi}{2 n}}\right)-3 \sin ^{-1}\left(\frac{2}{\sqrt{3}} \sin \frac{\pi}{2 n}\right)\right) \end{array}$

Conclusions

In this paper, the generalized formulas have been derived in terms of edge length and number of sides of regular polygonal base of the regular polygonal right antiprism for computing its important parameters such as, normal distances of faces from the centre, normal height, radius of circumscribed sphere, surface area, volume, dihedral angles between adjacent faces, solid angles subtended by the faces at the centre and solid angle subtended by antiprism at each vertex. The analytic and generalized formula derived here can be used to mathematically analyse and formulate the polyhedrons with large no. of faces, edges and vertices in discrete geometry.

References

[1]: Weisstein, Eric W. "Antiprism." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Antiprism.html
[2]: Wikipedia. "Antiprism". https://en.wikipedia.org/wiki/Antiprism . Accessed on 16-04-2023.
[3]: Rajpoot, Harish Chandra. (2019). "HCR's Theory of Polygon" "Solid angle subtended by any polygonal plane at any point in the space".

Available at:
https://www.researchgate.net/publication/333641300_HCR's_Theory_of_Polygon_Solid_angle_subtended_by_ any_polygonal_plane_at_any_point_in_the_space
[4]: Rajpoot, Harish Chandra (2014). HCR's Inverse Cosine Formula (Solution of internal \& external angles of a tetrahedron). Academia.edu
[5]: Rajpoot, Harish Chandra. (2023). Mathematical analysis of regular pentagonal right antiprism. 10.13140/RG.2.2.22879.33444.
[6]: Rajpoot, Harish Chandra. (2015). Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedral.

Available at:
https://www.academia.edu/11590798/Tables_for_dihedral_angles_between_the_adjacent_faces_with_a_commo n_edge_of_various_regular_and_uniform_polyhedra_by_HCR
[7]: Rajpoot, Harish Chandra. (2015). Solid angles subtended by the platonic solids (regular polyhedra) at their vertices.
Available at:
https://www.academia.edu/11711978/Solid_angles_subtended_by_the_platonic_solids_regular_polyhedrons_at _their_vertices_by_HCR

